Skip to main content
Log in

Open-channel metals fabricated by the removal of template wires

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper reviews the recent development of fabrication methods of porous metals with open-channels. The open-channel metals are fabricated through powder sintering or solidification technique. The template wires are embedded in the sintered or solidified metals, such as aluminum, copper, titanium and its alloys, which are then removed by chemical dissolution or extraction methods. The hole size, hole length and porosity are uniquely controlled by thickness, length and number of template metallic wires, respectively. The pore size ranges from 102 to several 103 μm in diameter. The open-channel metals are characterized by a large aspect ratio of the length to the diameter of the holes in metals. Furthermore, the techniques can fabricate spiral and V-shaped pores in metals. Feasibility and usefulness of each fabrication method are discussed. The methodology for producing the open-channel metals is expected to provide expanded opportunities for application technologies such as functional materials like heat sinks and sound absorbers and light-weight structural materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. L.J. Gibson and M.F. Ashby: Cellular Solids, 2nd ed. (Cambridge University Press, Cambridge, UK, 1997).

    Book  Google Scholar 

  2. H. Nakajima: Fabrication, properties and application of porous metals with directional pores. Progr. Mater. Sci. 52, 1091 (2007).

    Article  CAS  Google Scholar 

  3. H. Nakajima: Porous Metals with Directional Pores (Springer, Tokyo, Heidelberg, New York, Dordrecht, London, 2013).

    Book  Google Scholar 

  4. H. Nakajima, S.K. Hyun, K. Ohashi, K. Ota, and K. Murakami: Fabrication of porous copper by unidirectional solidification under hydrogen and its properties. Colloids Surf., A 179, 209 (2001).

    Article  CAS  Google Scholar 

  5. V. Shapovalov: Formation of ordered gas-solid structure via solidification in metal-hydrogen systems. Mat. Res. Soc. Symp. Proc. 521, 281 (1998).

  6. H. Chiba, T. Ogushi, and H. Nakajima: Heat transfer capacity of lotus-type porous copper heat sink for air cooling. J. Thermal Sci. Technol. 5, 222 (2010).

    Article  CAS  Google Scholar 

  7. H. Chiba, T. Ogushi, and H. Nakajima: Development of heat sinks for air cooling and water cooling using lotus-type porous metals. Proceedings of the ASME/JSME 2011 8th Thermal Eng. Joint Conference (AJTEC2011), Hawaii, USA, 2011, p. 1.

    Google Scholar 

  8. J.S. Park, S.K. Hyun, S. Suzuki, and H. Nakajima: Effect of transference velocity and hydrogen pressure on porosity and pore morphology of lotus-type porous copper fabricated by continuous casting technique. Acta Mater. 55, 5646 (2007).

    Article  CAS  Google Scholar 

  9. T. Ide, Y. Iio, and H. Nakajima: Fabrication of porous aluminum with directional pores through continuous casting technique. Metall. Mater. Trans. A 43A, 5140 (2012).

    Article  Google Scholar 

  10. Y. Goto: Available at: http://www.osaka-jp.net/osk22-2.htm, 2017 (accessed 16 February 2019).

  11. D. Gillen and D. Moore: Available at: http://www.blueacretechnology.com, 2012 (accessed 3 January 2019).

  12. P.E. Williams and A.D.L. Zouch: Drilling turbine blades. US patent 5222617, 1993.

    Google Scholar 

  13. M. Hakamada, Y. Asao, T. Kuromura, Y. Chen, H. Kusuda, and M. Mabuchi: Processing of three-dimensional metallic microchannels by spacer method. Mater. Lett. 62, 1118 (2008).

    Article  CAS  Google Scholar 

  14. M. Hakamada, Y. Asao, T. Kuromura, Y. Chen, H. Kusuda, and M. Mabuchi: Fabrication of copper microchannels by the spacer method. Scripta Mater. 56, 781 (2007).

    Article  CAS  Google Scholar 

  15. M. Hakamada, Y. Asao, N. Saito, and M. Mabuchi: Microfluidic flows in metallic microchannels fabricated by the spacer method. J. Micromech. Microeng. 18, 075029 (2008).

    Article  Google Scholar 

  16. P.J. Kwok, S.M. Oppenheimer, and D.C. Dunand: Porous titanium by electro-chemical dissolution of steel space-holders. Adv. Eng. Mater. 10, 820 (2008).

    Article  CAS  Google Scholar 

  17. D.J. Jorgensen and D.C. Dunand: Structure and mechanical properties of Ti-6Al-4V with a replicated network of elongated pores. Acta Mater. 59, 740 (2011).

    Article  Google Scholar 

  18. A.J. Neurohr and D.C. Dunand: Shape-memory NiTi with two-dimensional networks of micro-channels. Acta Biomater. 7, 1862 (2011).

    Article  CAS  Google Scholar 

  19. T. Haga and H. Fuse: Fabrication of lotus type through-holes using the semisolid condition. Adv. Mater. Process. Tech. 4, 16 (2018).

    Google Scholar 

  20. T. Haga, K. Toyoda and H. Fuse: Effect of casting conditions on fabrication of lotus type holes in ingot cast by core-bar pulling method. Key Eng. Mater. 748, 187 (2017).

    Article  Google Scholar 

  21. T. Haga and H. Fuse: Fabrication of lotus type porous ingots using the core-bar pulling method. Solid State Phenom. 285, 259 (2019).

    Article  Google Scholar 

  22. D. Muto, T. Yoshida, T. Tamai, M. Sawada and S. Suzuki: Fabrication of porous metals with unidirectionally aligned pores by rod-dipping process. Mater. Trans. 60, 544 (2019).

    Article  CAS  Google Scholar 

  23. H. Nakajima: Through hole aluminum fabricated by the extraction of lubricated metallic wires. Metall. Mater. Trans. A 50A, 5707 (2019).

    Article  Google Scholar 

  24. Juntsu, Available at: https://www.juntsu.co.jp/qa/qa0912.php (accessed 27 January 2019).

  25. P.G. Shewmon: Diffusion in Solids (McGraw-Hill, New York, NY, USA, 1963), pp. 117–122.

    Google Scholar 

  26. T. Iida and R.I.L. Guthrie: The Physical Properties of Liquid Metals (Oxford University Press, Oxford, UK, 1988), pp. 199–225.

    Google Scholar 

  27. H. Mehrer: Diffusion in Solid Metals and Alloys (Springer-Verlag, Berlin, Heidelberg, New York, 1990).

    Book  Google Scholar 

  28. S.K. Hyun, K. Murakami and H. Nakajima: Anisotropic mechanical properties of porous copper fabricated by unidirectional solidification. Mater. Sci. Eng., A A299, 241 (2001).

    Article  CAS  Google Scholar 

  29. S.K. Hyun and H. Nakajima: Anisotropic compressive properties of porous copper by unidirectional solidification. Mater. Sci. Eng., A A340, 258 (2003).

    Article  Google Scholar 

  30. I. Gibson, D.W. Rosen, and B. Stucker: Additive Manufacturing Technologies (Springer, New York, Heidelberg, Dordrecht, London, 2010).

    Book  Google Scholar 

Download references

Acknowledgments

The present author expresses his appreciation to Prof. David Dunand of Northwestern University for useful suggestions on denomination of open-channel metals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Nakajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakajima, H. Open-channel metals fabricated by the removal of template wires. Journal of Materials Research 35, 2535–2546 (2020). https://doi.org/10.1557/jmr.2020.143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.143

Navigation