Skip to main content
Log in

Mechanical properties and damping properties of carbon nanotube-reinforced foam aluminum with small aperture

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, CNTs reinforced foam aluminum matrix composites with small pore diameter were prepared by powder metallurgy method. When the mass fraction of CNTs was 0.75%, the tensile strength, flexural strength and compressive yield strength of the materials were 3.4 times, 2.4 times and 2.4 times of pure foam aluminum, respectively, reaching the maximum value, which obviously improved the mechanical properties of aluminum foam. The tensile property model of foam aluminum matrix composites was built to predict the properties of the composites, and the effects of defects and reinforcement on the mechanical properties of the composites were compared. The results show that the tensile fitting is consistent with the measured results when the mass fraction of CNTs is less than 0.75%, but the weakening effect of defects on the strength of aluminum foam is much greater than the enhancement of CNTs. With the increase of CNTs mass fraction, the damping loss factor of foam aluminum composites increases, dislocation damping and grain boundary damping play a role in advance, and the damping peak moves to the low temperature region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. D.H. Yang and D.P. He: Porosity of porous Al alloys. Sci. China: Chem. 44(4), 411–418 (2001).

    Article  CAS  Google Scholar 

  2. G.C. Yao, H.J. Luo and Z.K. Cao: The properties and application technology of the aluminum foam material. In International Conference on Advanced Material Engineering, 2015, pp. 442–450.

  3. Y. Du, A.B. Li, X.X. Zhang, Z.B. Tan, R.Z. Su, F. Pu and L. Geng: Enhancement of the mechanical strength of aluminum foams by SiC nanoparticles. Mater. Lett. 148, 79–81 (2015).

    Article  CAS  Google Scholar 

  4. A. Daoud: Compressive response and energy absorption of foamed A359 -Al2O3 particle composites. J. Alloys Compd. 486(1-2), 597–605 (2009).

    Article  CAS  Google Scholar 

  5. A. Krishnan, E. Dujardin, T.W. Ebbesen and P.N. Yianilos: Young's modulus of single-walled nanotubes. Phys. Rev. B 58(20), 14013–14019 (1998).

    Article  CAS  Google Scholar 

  6. I. Duartea, E. Ventura, S. Olhero and J.M. Ferreira: An effective approach to reinforced closed-cell Al-alloy foams with multiwalled carbon nanotubes. Carbon 95, 589–600 (2015).

    Article  Google Scholar 

  7. Z. Zhang, J. Ding, X.C. Xia, X.H. Sun, K.H. Song, W.M. Zhao, B. Liao: Fabrication and characterization of closed-cell aluminum foams with different contents of multi-walled carbon nanotubes. Mater. Des. 88, 359–365 (2015).

    Article  CAS  Google Scholar 

  8. K.M. Yang, X.D. Yang, E.Z. Liu, C.S. Shi, L.Y. Ma, C.N. He, Q.Y. Li, J.J. Li and N.Q. Zhao: Elevated temperature compressive properties and energy absorption response of in-situ grown CNT-reinforced Al composite foams. Mater. Sci. Eng. 690, 294–302 (2017).

    Article  CAS  Google Scholar 

  9. B. Jiang, Z.J. Wang and N.Q. Zhao: Effect of pore size and relative density on the mechanical properties of open cell aluminum foams. Scr. Mater. 56(2), 169–172 (2007).

    Article  CAS  Google Scholar 

  10. N.Q. Zhao, W.X. Zhao, B. Jiang, D.H. Fu and F.G. Zhou: Damping properties of aluminum foams produced by pressing-dissolution-vacuum sintering process. Powder Metall. Techol. 24(2), 127–130 (2006).

    Google Scholar 

  11. Y.Z. Li, X.F. Wang, X.F. Wang, Y.L. Ren, F.S. Han and C. Wen: Sound absorption characteristics of aluminum foam with spherical cells. J. Appl. Phys. 110(11), 113525 (2011).

    Article  Google Scholar 

  12. H.J. Choi, J.H. Shin and D.H. Bae: Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes. Compos. Sci. Technol. 71(15), 1699–1705 (2011).

    Article  CAS  Google Scholar 

  13. H. Arami and A. Simchi: Reactive milling synthesis of nanocrystalline Al -Cu/Al2O3 nanocomposite. Mater. Sci. Eng. A 464 (1), 225–232 (2007).

    Article  Google Scholar 

  14. B. Chen, S.F. Li, H. Imai, L. Jia, J. Umeda, M. Takahashi: Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests. Compos. Sci. Technol. 113, 1–8 (2015).

    Article  CAS  Google Scholar 

  15. H. Kurita, M. Estili, H. Kwon, T. Miyazaki, W.W. Zhou, J. Silvain and A. Kawasaki: Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum. Compos. Part A Appl. Sci. 68, 133–139 (2015).

    Article  CAS  Google Scholar 

  16. H. Kwon, D.H. Park, J.F. Silvain and A. Kawasaki: Investigation of carbon nanotube reinforced aluminum matrix composite materials. Compos. Sci. Technol. 70(3), 546–550 (2010).

    Article  CAS  Google Scholar 

  17. S.E. Shin and D.H. Bae: Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites. Mater. Charact. 83, 170–177 (2013).

    Article  CAS  Google Scholar 

  18. A. Granato and K. Lücke: Theory of mechanical damping due to dislocations. J. Appl. Phys. 27(6), 583–593 (2004).

    Article  Google Scholar 

  19. T. Kê: A grain boundary model and the mechanism of viscous intercrystalline slip. J. Appl. Phys. 20(3), 274–280 (1949).

    Article  Google Scholar 

  20. J. Zhang, M.N. Gungor, and E.J. Lavernia: The effect of porosity on the microstructural damping response of 6061 aluminium alloy. J. Mater. Sci. 28(6), 1515–1524 (1993).

    Article  CAS  Google Scholar 

  21. T.S. Srivatsan, I.A. Ibrahim, F.A. Mohamed and E.J. Lavernia: Processing techniques for particulate-reinforced metal aluminium matrix composites. J. Mater. Sci. 26(22), 5965–5978 (1991).

    Article  CAS  Google Scholar 

  22. F.S. Han, Z.G. Zhu, C.S. Liu and J.C. Gao: Damping behavior of foamed aluminum. Metall. Mater. Trans. A 30(3), 771–776 (1999).

    Article  Google Scholar 

  23. S.U. Khan, C.Y. Li, N.A. Siddiqui and J.K. Kim: Vibration damping characteristics of carbon fiber-reinforced composites containing multi-walled carbon nanotubes. Compos. Sci. Technol. 71(12), 1486–1494 (2011).

    Article  CAS  Google Scholar 

  24. X. Zhou, E. Shin, K.W. Wang and C.E. Bakis: Interfacial damping characteristics of carbon nanotube-based composites. Compos. Sci. Technol. 64(15), 2425–2437 (2004).

    Article  CAS  Google Scholar 

  25. C.F. Deng, D.Z. Wang, X.X. Zhangan and Y.X. Ma: Damping characteristics of carbon nanotube reinforced aluminum composite. Mater. Lett. 61(14 -15), 3229–3231 (2007).

    Article  CAS  Google Scholar 

  26. S. Guo, R. Sivakumar and Y. Kagawa: Multiwall carbon nanotube-SiO2 nanocomposites: Sintering, elastic properties, and fracture toughness. Adv. Eng. Mater. 9(1 -2), 84–87 (2007).

    Article  CAS  Google Scholar 

  27. A. Peigney, E. Flahaut, C. Laurent, F. Chastel and A. Rousset: Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion. Chem. Phys. Lett. 352(1-2), 20–25 (2002).

    Article  CAS  Google Scholar 

  28. Q. Huang and L. Gao: Multiwalled carbon nanotube/BaTiO3 nanocomposites: Electrical and rectification properties. Appl. Phys. Lett. 86(12), 631 (2005).

    Google Scholar 

  29. M.F. Ashby, R.F.M. Medalist: The mechanical properties of cellular solids. Metall. Mater. Trans. A 14(9), 1755–1769 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Liu, B., Ji, Z. et al. Mechanical properties and damping properties of carbon nanotube-reinforced foam aluminum with small aperture. Journal of Materials Research 35, 2567–2574 (2020). https://doi.org/10.1557/jmr.2020.135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.135

Navigation