Skip to main content
Log in

Effect of anisotropic silk fibroin topographies on dorsal root ganglion

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The surface topology of biomaterial has a definite effect on the growth behavior of nerve cells for peripheral nerve regeneration. In this study, the silk fibroin (SF) film with different anisotropic microgroove/ridge was constructed by micropatterning technology. The effects of topologies width on the directional growth of dorsal root ganglion (DRG) neurons were evaluated. The results showed that the topological structure of the SF film with higher SF concentration was more clear and complete. The microtopography of the SF film with a concentration of 15% and a groove width of around 30 μm could effectively guide the directional growth of the nerve fibers of DRG. And nerve fibers could obviously form nerve fiber bundles which may have a certain pavement effect on the recovery of nerve function. The study indicated that the SF film with a specific width of the topological structure may have potential applications in the field of directional nerve regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. L.R. Robinson: Traumatic injury to peripheral nerves. Muscle Nerve23, 863 (2000).

    Article  CAS  Google Scholar 

  2. X. Gu, F. Ding, and D.F. Williams: Neural tissue engineering options for peripheral nerve regeneration. Biomaterials35, 6143 (2014).

    Article  CAS  Google Scholar 

  3. X.S. Gu, F. Ding, Y.M. Yang, and J. Liu: Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog. Neurobiol.93, 204 (2011).

    Article  CAS  Google Scholar 

  4. X.S. Gu, F. Ding, and D.F. Williams: Neural tissue engineering options for peripheral nerve regeneration. Biomaterials35, 6143 (2014).

    Article  CAS  Google Scholar 

  5. K. Belanger, T.M. Dinis, S. Taourirt, G. Vidal, D.L. Kaplan, and C. Egles: Recent strategies in tissue engineering for guided peripheral nerve regeneration. Macromol. Biosci.16, 472 (2016).

    Article  CAS  Google Scholar 

  6. M. Siemionow and G. Brzezicki: Chapter 8: Current techniques and concepts in peripheral nerve repair. Int. Rev. Neurobiol.87, 141 (2009).

    Article  CAS  Google Scholar 

  7. S.E. Mackinnon and A.R. Hudson: Clinical application of peripheral nerve transplantation. Plast. Reconstr. Surg.90, 695 (1992).

    Article  CAS  Google Scholar 

  8. Y. Yang, F. Ding, H. Wu, W. Hu, W. Liu, H. Liu, and X. Gu: Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials28, 5526 (2007).

    Article  CAS  Google Scholar 

  9. Z.Q. Xu, Z.X. Chen, W.F. Feng, M.L. Huang, X.N. Yang, and Z.L. Qi: Grafted muscle-derived stem cells promote the therapeutic efficiency of epimysium conduits in mice with peripheral nerve gap injury. Artif. Organs44, E214 (2020).

    Article  Google Scholar 

  10. S. Houshyar, A. Bhattacharyya, and R. Shanks: Peripheral nerve conduit: Materials and structures. ACS Chem. Neurosci.10, 3349 (2019).

    Article  CAS  Google Scholar 

  11. C.H. Lee, Y.W. Cheng, and G.S. Huang: Topographical control of cell-cell interaction in C6 glioma by nanodot arrays. Nanoscale Res. Lett.9, 250 (2014).

    Article  CAS  Google Scholar 

  12. C. Leclech, M. Renner, C. Villard, and C. Metin: Topographical cues control the morphology and dynamics of migrating cortical interneurons. Biomaterials214 (2019).

  13. V.T. Bui, L.T. Thuy, J.S. Choi, and H.S. Choi: Ordered cylindrical micropatterned Petri dishes used as scaffolds for cell growth. J. Colloid Interf. Sci.513, 161 (2018).

    Article  CAS  Google Scholar 

  14. P. Viswanathan, M.G. Ondeck, S. Chirasatitsin, K. Ngamkham, G.C. Reilly, A.J. Engler, and G. Battaglia: 3D surface topology guides stem cell adhesion and differentiation. Biomaterials52, 140 (2015).

    Article  CAS  Google Scholar 

  15. H.R. Seo, H.J. Joo, D.H. Kim, L.H. Cui, S.C. Choi, J.H. Kim, S.W. Cho, K.B. Lee, and D.S. Lim: Nanopillar surface topology promotes cardiomyocyte differentiation through cofilin-mediated cytoskeleton rearrangement. ACS Appl. Mater. Interfaces9, 16804 (2017).

    Google Scholar 

  16. S.J. Liliensiek, J.A. Wood, J.A. Yong, R. Auerbach, P.F. Nealey, and C.J. Murphy: Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials31, 5418 (2010).

    Article  CAS  Google Scholar 

  17. G. Abagnale, A. Sechi, M. Steger, Q.H. Zhou, C.C. Kuo, G. Aydin, C. Schalla, G. Muller-Newen, M. Zenke, I.G. Costa, P. Van Rijn, A. Gillner, and W. Wagner: Surface topography guides morphology and spatial patterning of induced pluripotent stem cell colonies. Stem Cell Rep.9, 654 (2017).

    Article  CAS  Google Scholar 

  18. G.C. Li, S.Y. Chen, M. Zeng, K. Yan, Z. Fei, Z. Luzhong, and Y. Yumin: Hierarchically aligned gradient collagen micropatterns for rapidly screening Schwann cells behavior. Colloid Surf. B176, 341 (2019).

    Article  CAS  Google Scholar 

  19. G.C. Li, X.Y. Zhao, W.X. Zhao, L.Z. Zhang, C.P. Wang, M.R. Jiang, X.S. Gu, and Y.M. Yang: Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on Schwann cells. Biomaterials35, 8503 (2014).

    Article  CAS  Google Scholar 

  20. A. Badea, J.M. Mccracken, E.G. Tillmaand, M.E. Kandel, A.W. Oraham, M.B. Mevis, S.S. Rubakhin, G. Popescu, J.V. Sweedler, and R.G. Nuzzo: 3D-Printed pHEMA materials for topographical and biochemical modulation of dorsal root ganglion cell response. ACS Appl. Mater. Interfaces9, 30318 (2017).

    Article  CAS  Google Scholar 

  21. C. Vepari and D.L. Kaplan: Silk as a biomaterial. Prog. Polym. Sci.32, 991 (2007).

    Article  CAS  Google Scholar 

  22. D. Huemmerich, U. Slotta, and T. Scheibel: Processing and modification of films made from recombinant spider silk proteins. Appl. Phys. A Mater. Sci. Process.82, 219 (2006).

    Article  CAS  Google Scholar 

  23. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J.S. Chen, H. Lu, J. Richmond, and D.L. Kaplan: Silk-based biomaterials. Biomaterials24, 401 (2003).

    Article  CAS  Google Scholar 

  24. B.D. Lawrence, J.K. Marchant, M.A. Pindrus, F.G. Omenetto, and D.L. Kaplan: Silk film biomaterials for cornea tissue engineering. Biomaterials30, 1299 (2009).

    Article  CAS  Google Scholar 

  25. E.S. Gil, B.B. Mandal, S.H. Park, J.K. Marchant, F.G. Omenetto, and D.L. Kaplan: Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials31, 8953 (2010).

    Article  CAS  Google Scholar 

  26. Y.M. Yang, X.M. Chen, F. Ding, P.Y. Zhang, J. Liu, and X.S. Go: Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials28, 1643 (2007).

    Article  CAS  Google Scholar 

  27. G.F. Li, K. Chen, D. You, M.Y. Xia, W. Li, S.N. Fan, R.J. Chai, Y.P. Zhang, H.W. Li, and S. Sun: Laminin-coated electrospun regenerated silk fibroin mats promote neural progenitor cell proliferation, differentiation, and survival in vitro. Front. Bioeng. Biotech.7, 190 (2019).

    Article  Google Scholar 

  28. M. Nune, S. Manchineella, T. Govindaraju, and K.S. Narayan: Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering. Mat. Sci. Eng. C Mater.94, 17 (2019).

    Article  CAS  Google Scholar 

  29. C.Y. Wang, K.L. Xia, Y.Y. Zhang, and D.L. Kaplan: Silk-based advanced materials for soft electronics. Acc. Chem. Res.52, 2916 (2019).

    Article  CAS  Google Scholar 

  30. S. Shrestha, B.K. Shrestha, J. Lee, O.K. Joong, B.S. Kim, C.H. Park, and C.S. Kim: A conducting neural interface of polyurethane/silk-functionalized multiwall carbon nanotubes with enhanced mechanical strength for neuroregeneration. Mat. Sci. Eng. C Mater.102, 511 (2019).

    Article  CAS  Google Scholar 

  31. A. Saftics, B. Turk, A. Sulyok, N. Nagy, T. Gerecsei, I. Szekacs, S. Kurunczi, and R. Horvath: Biomimetic dextran-based hydrogel layers for cell micropatterning over large areas using the FluidFM BOT technology. Langmuir35, 2412 (2019).

    Article  CAS  Google Scholar 

  32. A. Frank, J. Grunwald, B. Breitbach, and C. Scheu: Facile and robust solvothermal synthesis of nanocrystalline CuInS2 thin films. Nanomaterials (Basel) 8, 405 (2018).

    Google Scholar 

  33. A.P. Blum, J.K. Kammeyer, A.M. Rush, C.E. Callmann, M.E. Hahn, and N.C. Gianneschi: Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc.137, 2140 (2015).

    Article  CAS  Google Scholar 

  34. Y. Zhang, S.E. Chen, J.L. Shao, and J.J.J.P. Van Den Beucken: Combinatorial surface roughness effects on osteoclastogenesis and osteogenesis. ACS Appl. Mater. Interfaces10, 36652 (2018).

    Article  CAS  Google Scholar 

  35. X.Z. Li, Q.L. Huang, T.A. Elkhooly, Y. Liu, H. Wu, Q.L. Feng, L. Liu, Y. Fang, W.H. Zhu, and T.R. Hu: Effects of titanium surface roughness on the mediation of osteogenesis via modulating the immune response of macrophages. Biomed. Mater.13, 19 (2018).

    CAS  Google Scholar 

  36. M.M. Gad, A. Rahoma, and A.M. Al-Thobity: Effect of polymerization technique and glass fiber addition on the surface roughness and hardness of PMMA denture base material. Dent. Mater. J.37, 746 (2018).

    Article  CAS  Google Scholar 

  37. B. Schoen, R. Avrahami, L. Baruch, Y. Efraim, I. Goldfracht, O. Elul, T. Davidov, L. Gepstein, E. Zussman, and M. Machluf: Electrospun extracellular matrix: Paving the way to tailor-made natural scaffolds for cardiac tissue regeneration. Adv. Funct. Mater.27, 1700427 (2017).

    Article  CAS  Google Scholar 

  38. A. Sethuraman, M. Han, R.S. Kane, and G. Belfort: Effect of surface wettability on the adhesion of proteins. Langmuir20, 7779 (2004).

    Article  CAS  Google Scholar 

  39. M.Y. Cheng, J.U. Deng, F. Yang, Y.D. Gong, N.M. Zhao, and X.F. Zhang: Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials24, 2871 (2003).

    Article  CAS  Google Scholar 

  40. V. Chandran, G. Coppola, H. Nawabi, T. Omura, R. Versano, E.A. Huebner, A. Zhang, M. Costigan, A. Yekkirala, L. Barrett, A. Blesch, I. Michaelevski, J. Davis-Turak, F. Gao, P. Langfelder, S. Horvath, Z. He, L. Benowitz, M. Fainzilber, M. Tuszynski, C.J. Woolf, and D.H. Geschwind: A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron89, 956 (2016).

    Article  CAS  Google Scholar 

  41. C.W. Li, B. Davis, J. Shea, H. Sant, B.K. Gale, and J. Agarwal: Optimization of micropatterned poly(lactic-co-glycolic acid) films for enhancing dorsal root ganglion cell orientation and extension. Neural Regen. Res.13, 105 (2018).

    Article  Google Scholar 

  42. A.J. Hu, B.Q. Zuo, F. Zhang, Q. Lan, and H.X. Zhang: Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation. Neural Regen. Res.7, 1171 (2012).

    Google Scholar 

  43. X. Tang, F. Ding, Y.M. Yang, N. Hu, H. Wu, and X.S. Gu: Evaluation on in vitro biocompatibility of silk fibroin-based biomaterials with primarily cultured hippocampal neurons. J. Biomed. Mater. Res. A91a, 166 (2009).

    Article  CAS  Google Scholar 

  44. X. Li, Q. Zhang, Z. Luo, S. Yan, and R. You: Biofunctionalized silk fibroin nanofibers for directional and long neurite outgrowth. Biointerphases14, 061001 (2019).

    Article  Google Scholar 

  45. A.M. Ghaznavi, L.E. Kokai, M.L. Lovett, D.L. Kaplan, and K.G. Marra: Silk fibroin conduits: a cellular and functional assessment of peripheral nerve repair. Ann. Plast. Surg.66, 273 (2011).

    Article  CAS  Google Scholar 

  46. A.T. Nguyen, S.R. Sathe, and E.K. Yim: From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance. J. Phys. Condens. Matter28, 183001 (2016).

    Article  CAS  Google Scholar 

  47. J.D. White, S. Wang, A.S. Weiss, and D.L. Kaplan: Silk-tropoelastin protein films for nerve guidance. Acta Biomater.14, 1 (2015).

    Article  CAS  Google Scholar 

  48. J.P. Kaiser, A. Reinmann, and A. Bruinink: The effect of topographic characteristics on cell migration velocity. Biomaterials27, 5230 (2006).

    Article  CAS  Google Scholar 

  49. C.V. Melendez-Vasquez, S. Einheber, and J.L. Salzer: Rho kinase regulates Schwann cell myelination and formation of associated axonal domains. J. Neurosci.24, 3953 (2004).

    Article  CAS  Google Scholar 

  50. Q. Lu, X. Hu, X.Q. Wang, J.A. Kluge, S.Z. Lu, P. Cebe, and D.L. Kaplan: Water-insoluble silk films with silk I structure. Acta Biomater.6, 1380 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Key Research and Development Program of China (2018YFC1105603, 2016YFC1101600), the National Natural Science Foundation of China (31830028, 31771054). Natural Key Science Research Program of Jiangsu Education Department (19KJA320006), Directive Project of Science and Technology Plan of Nantong City (MS12018028), 226 High-level Talent Training Project (2nd level, 2018 II-182) of Nantong City, Qinglan Project of Jiangsu Province (2018), Undergraduate Innovation Training Programs of Nantong University (2019119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guicai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, Y., Zhang, L., Han, Q. et al. Effect of anisotropic silk fibroin topographies on dorsal root ganglion. Journal of Materials Research 35, 1738–1748 (2020). https://doi.org/10.1557/jmr.2020.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.131

Navigation