Abstract
The surface topology of biomaterial has a definite effect on the growth behavior of nerve cells for peripheral nerve regeneration. In this study, the silk fibroin (SF) film with different anisotropic microgroove/ridge was constructed by micropatterning technology. The effects of topologies width on the directional growth of dorsal root ganglion (DRG) neurons were evaluated. The results showed that the topological structure of the SF film with higher SF concentration was more clear and complete. The microtopography of the SF film with a concentration of 15% and a groove width of around 30 μm could effectively guide the directional growth of the nerve fibers of DRG. And nerve fibers could obviously form nerve fiber bundles which may have a certain pavement effect on the recovery of nerve function. The study indicated that the SF film with a specific width of the topological structure may have potential applications in the field of directional nerve regeneration.
Similar content being viewed by others
References
L.R. Robinson: Traumatic injury to peripheral nerves. Muscle Nerve23, 863 (2000).
X. Gu, F. Ding, and D.F. Williams: Neural tissue engineering options for peripheral nerve regeneration. Biomaterials35, 6143 (2014).
X.S. Gu, F. Ding, Y.M. Yang, and J. Liu: Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog. Neurobiol.93, 204 (2011).
X.S. Gu, F. Ding, and D.F. Williams: Neural tissue engineering options for peripheral nerve regeneration. Biomaterials35, 6143 (2014).
K. Belanger, T.M. Dinis, S. Taourirt, G. Vidal, D.L. Kaplan, and C. Egles: Recent strategies in tissue engineering for guided peripheral nerve regeneration. Macromol. Biosci.16, 472 (2016).
M. Siemionow and G. Brzezicki: Chapter 8: Current techniques and concepts in peripheral nerve repair. Int. Rev. Neurobiol.87, 141 (2009).
S.E. Mackinnon and A.R. Hudson: Clinical application of peripheral nerve transplantation. Plast. Reconstr. Surg.90, 695 (1992).
Y. Yang, F. Ding, H. Wu, W. Hu, W. Liu, H. Liu, and X. Gu: Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials28, 5526 (2007).
Z.Q. Xu, Z.X. Chen, W.F. Feng, M.L. Huang, X.N. Yang, and Z.L. Qi: Grafted muscle-derived stem cells promote the therapeutic efficiency of epimysium conduits in mice with peripheral nerve gap injury. Artif. Organs44, E214 (2020).
S. Houshyar, A. Bhattacharyya, and R. Shanks: Peripheral nerve conduit: Materials and structures. ACS Chem. Neurosci.10, 3349 (2019).
C.H. Lee, Y.W. Cheng, and G.S. Huang: Topographical control of cell-cell interaction in C6 glioma by nanodot arrays. Nanoscale Res. Lett.9, 250 (2014).
C. Leclech, M. Renner, C. Villard, and C. Metin: Topographical cues control the morphology and dynamics of migrating cortical interneurons. Biomaterials214 (2019).
V.T. Bui, L.T. Thuy, J.S. Choi, and H.S. Choi: Ordered cylindrical micropatterned Petri dishes used as scaffolds for cell growth. J. Colloid Interf. Sci.513, 161 (2018).
P. Viswanathan, M.G. Ondeck, S. Chirasatitsin, K. Ngamkham, G.C. Reilly, A.J. Engler, and G. Battaglia: 3D surface topology guides stem cell adhesion and differentiation. Biomaterials52, 140 (2015).
H.R. Seo, H.J. Joo, D.H. Kim, L.H. Cui, S.C. Choi, J.H. Kim, S.W. Cho, K.B. Lee, and D.S. Lim: Nanopillar surface topology promotes cardiomyocyte differentiation through cofilin-mediated cytoskeleton rearrangement. ACS Appl. Mater. Interfaces9, 16804 (2017).
S.J. Liliensiek, J.A. Wood, J.A. Yong, R. Auerbach, P.F. Nealey, and C.J. Murphy: Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials31, 5418 (2010).
G. Abagnale, A. Sechi, M. Steger, Q.H. Zhou, C.C. Kuo, G. Aydin, C. Schalla, G. Muller-Newen, M. Zenke, I.G. Costa, P. Van Rijn, A. Gillner, and W. Wagner: Surface topography guides morphology and spatial patterning of induced pluripotent stem cell colonies. Stem Cell Rep.9, 654 (2017).
G.C. Li, S.Y. Chen, M. Zeng, K. Yan, Z. Fei, Z. Luzhong, and Y. Yumin: Hierarchically aligned gradient collagen micropatterns for rapidly screening Schwann cells behavior. Colloid Surf. B176, 341 (2019).
G.C. Li, X.Y. Zhao, W.X. Zhao, L.Z. Zhang, C.P. Wang, M.R. Jiang, X.S. Gu, and Y.M. Yang: Porous chitosan scaffolds with surface micropatterning and inner porosity and their effects on Schwann cells. Biomaterials35, 8503 (2014).
A. Badea, J.M. Mccracken, E.G. Tillmaand, M.E. Kandel, A.W. Oraham, M.B. Mevis, S.S. Rubakhin, G. Popescu, J.V. Sweedler, and R.G. Nuzzo: 3D-Printed pHEMA materials for topographical and biochemical modulation of dorsal root ganglion cell response. ACS Appl. Mater. Interfaces9, 30318 (2017).
C. Vepari and D.L. Kaplan: Silk as a biomaterial. Prog. Polym. Sci.32, 991 (2007).
D. Huemmerich, U. Slotta, and T. Scheibel: Processing and modification of films made from recombinant spider silk proteins. Appl. Phys. A Mater. Sci. Process.82, 219 (2006).
G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J.S. Chen, H. Lu, J. Richmond, and D.L. Kaplan: Silk-based biomaterials. Biomaterials24, 401 (2003).
B.D. Lawrence, J.K. Marchant, M.A. Pindrus, F.G. Omenetto, and D.L. Kaplan: Silk film biomaterials for cornea tissue engineering. Biomaterials30, 1299 (2009).
E.S. Gil, B.B. Mandal, S.H. Park, J.K. Marchant, F.G. Omenetto, and D.L. Kaplan: Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials31, 8953 (2010).
Y.M. Yang, X.M. Chen, F. Ding, P.Y. Zhang, J. Liu, and X.S. Go: Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials28, 1643 (2007).
G.F. Li, K. Chen, D. You, M.Y. Xia, W. Li, S.N. Fan, R.J. Chai, Y.P. Zhang, H.W. Li, and S. Sun: Laminin-coated electrospun regenerated silk fibroin mats promote neural progenitor cell proliferation, differentiation, and survival in vitro. Front. Bioeng. Biotech.7, 190 (2019).
M. Nune, S. Manchineella, T. Govindaraju, and K.S. Narayan: Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering. Mat. Sci. Eng. C Mater.94, 17 (2019).
C.Y. Wang, K.L. Xia, Y.Y. Zhang, and D.L. Kaplan: Silk-based advanced materials for soft electronics. Acc. Chem. Res.52, 2916 (2019).
S. Shrestha, B.K. Shrestha, J. Lee, O.K. Joong, B.S. Kim, C.H. Park, and C.S. Kim: A conducting neural interface of polyurethane/silk-functionalized multiwall carbon nanotubes with enhanced mechanical strength for neuroregeneration. Mat. Sci. Eng. C Mater.102, 511 (2019).
A. Saftics, B. Turk, A. Sulyok, N. Nagy, T. Gerecsei, I. Szekacs, S. Kurunczi, and R. Horvath: Biomimetic dextran-based hydrogel layers for cell micropatterning over large areas using the FluidFM BOT technology. Langmuir35, 2412 (2019).
A. Frank, J. Grunwald, B. Breitbach, and C. Scheu: Facile and robust solvothermal synthesis of nanocrystalline CuInS2 thin films. Nanomaterials (Basel) 8, 405 (2018).
A.P. Blum, J.K. Kammeyer, A.M. Rush, C.E. Callmann, M.E. Hahn, and N.C. Gianneschi: Stimuli-responsive nanomaterials for biomedical applications. J. Am. Chem. Soc.137, 2140 (2015).
Y. Zhang, S.E. Chen, J.L. Shao, and J.J.J.P. Van Den Beucken: Combinatorial surface roughness effects on osteoclastogenesis and osteogenesis. ACS Appl. Mater. Interfaces10, 36652 (2018).
X.Z. Li, Q.L. Huang, T.A. Elkhooly, Y. Liu, H. Wu, Q.L. Feng, L. Liu, Y. Fang, W.H. Zhu, and T.R. Hu: Effects of titanium surface roughness on the mediation of osteogenesis via modulating the immune response of macrophages. Biomed. Mater.13, 19 (2018).
M.M. Gad, A. Rahoma, and A.M. Al-Thobity: Effect of polymerization technique and glass fiber addition on the surface roughness and hardness of PMMA denture base material. Dent. Mater. J.37, 746 (2018).
B. Schoen, R. Avrahami, L. Baruch, Y. Efraim, I. Goldfracht, O. Elul, T. Davidov, L. Gepstein, E. Zussman, and M. Machluf: Electrospun extracellular matrix: Paving the way to tailor-made natural scaffolds for cardiac tissue regeneration. Adv. Funct. Mater.27, 1700427 (2017).
A. Sethuraman, M. Han, R.S. Kane, and G. Belfort: Effect of surface wettability on the adhesion of proteins. Langmuir20, 7779 (2004).
M.Y. Cheng, J.U. Deng, F. Yang, Y.D. Gong, N.M. Zhao, and X.F. Zhang: Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials24, 2871 (2003).
V. Chandran, G. Coppola, H. Nawabi, T. Omura, R. Versano, E.A. Huebner, A. Zhang, M. Costigan, A. Yekkirala, L. Barrett, A. Blesch, I. Michaelevski, J. Davis-Turak, F. Gao, P. Langfelder, S. Horvath, Z. He, L. Benowitz, M. Fainzilber, M. Tuszynski, C.J. Woolf, and D.H. Geschwind: A systems-level analysis of the peripheral nerve intrinsic axonal growth program. Neuron89, 956 (2016).
C.W. Li, B. Davis, J. Shea, H. Sant, B.K. Gale, and J. Agarwal: Optimization of micropatterned poly(lactic-co-glycolic acid) films for enhancing dorsal root ganglion cell orientation and extension. Neural Regen. Res.13, 105 (2018).
A.J. Hu, B.Q. Zuo, F. Zhang, Q. Lan, and H.X. Zhang: Electrospun silk fibroin nanofibers promote Schwann cell adhesion, growth and proliferation. Neural Regen. Res.7, 1171 (2012).
X. Tang, F. Ding, Y.M. Yang, N. Hu, H. Wu, and X.S. Gu: Evaluation on in vitro biocompatibility of silk fibroin-based biomaterials with primarily cultured hippocampal neurons. J. Biomed. Mater. Res. A91a, 166 (2009).
X. Li, Q. Zhang, Z. Luo, S. Yan, and R. You: Biofunctionalized silk fibroin nanofibers for directional and long neurite outgrowth. Biointerphases14, 061001 (2019).
A.M. Ghaznavi, L.E. Kokai, M.L. Lovett, D.L. Kaplan, and K.G. Marra: Silk fibroin conduits: a cellular and functional assessment of peripheral nerve repair. Ann. Plast. Surg.66, 273 (2011).
A.T. Nguyen, S.R. Sathe, and E.K. Yim: From nano to micro: topographical scale and its impact on cell adhesion, morphology and contact guidance. J. Phys. Condens. Matter28, 183001 (2016).
J.D. White, S. Wang, A.S. Weiss, and D.L. Kaplan: Silk-tropoelastin protein films for nerve guidance. Acta Biomater.14, 1 (2015).
J.P. Kaiser, A. Reinmann, and A. Bruinink: The effect of topographic characteristics on cell migration velocity. Biomaterials27, 5230 (2006).
C.V. Melendez-Vasquez, S. Einheber, and J.L. Salzer: Rho kinase regulates Schwann cell myelination and formation of associated axonal domains. J. Neurosci.24, 3953 (2004).
Q. Lu, X. Hu, X.Q. Wang, J.A. Kluge, S.Z. Lu, P. Cebe, and D.L. Kaplan: Water-insoluble silk films with silk I structure. Acta Biomater.6, 1380 (2010).
Acknowledgments
The authors gratefully acknowledge the financial support of the National Key Research and Development Program of China (2018YFC1105603, 2016YFC1101600), the National Natural Science Foundation of China (31830028, 31771054). Natural Key Science Research Program of Jiangsu Education Department (19KJA320006), Directive Project of Science and Technology Plan of Nantong City (MS12018028), 226 High-level Talent Training Project (2nd level, 2018 II-182) of Nantong City, Qinglan Project of Jiangsu Province (2018), Undergraduate Innovation Training Programs of Nantong University (2019119).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kong, Y., Zhang, L., Han, Q. et al. Effect of anisotropic silk fibroin topographies on dorsal root ganglion. Journal of Materials Research 35, 1738–1748 (2020). https://doi.org/10.1557/jmr.2020.131
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2020.131