Skip to main content
Log in

Temperature-dependent mechanical behavior of three-dimensionally ordered macroporous tungsten

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Porous metals represent a class of materials where the interplay of ligament length, width, node structure, and local geometry/curvature offers a rich parameter space for the study of critical length scales on mechanical behavior. Colloidal crystal templating of three-dimensionally ordered macroporous (3DOM, i.e., inverse opal) tungsten provides a unique structure to investigate the mechanical behavior at small length scales across the brittle–ductile transition. Micropillar compression tests show failure at 50 MPa contact pressure at 30 °C, implying a ligament yield strength of approximately 6.1 GPa for a structure with 5% relative density. In situ SEM frustum indentation tests with in-plane strain maps perpendicular to loading indicate local compressive strains of approximately 2% at failure at 30 °C. Increased sustained contact pressure is observed at 225 °C, although large (20%) nonlocal strains appear at 125 °C. The elevated-temperature mechanical performance is limited by cracks that initiate on planes of greatest shear under the indenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A.M. Hodge, J. Biener, J.R. Hayes, P.M. Bythrow, C.A. Volkert, and A.V. Hamza: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55(4), 1343 (2007).

    CAS  Google Scholar 

  2. C.A. Volkert, E.T. Lilleodden, D. Kramer, and J. Weissmüller: Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 89(6), 10 (2006).

    Google Scholar 

  3. M. Zhao, I. Issa, M.J. Pfeifenberger, M. Wurmshuber, and D. Kiener: Tailoring ultra-strong nanocrystalline tungsten nanofoams by reverse phase dissolution. Acta Mater. 182, 215 (2020).

    CAS  Google Scholar 

  4. L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties (Cambridge University Press, Cambridge, 1988).

    Google Scholar 

  5. K. Hu, M. Ziehmer, K. Wang, and E.T. Lilleodden: Nanoporous gold: 3D structural analyses of representative volumes and their implications on scaling relations of mechanical behaviour. Philos. Mag. 96(32–34), 3322 (2016).

    CAS  Google Scholar 

  6. H.J. Jin, L. Kurmanaeva, J. Schmauch, H. Rösner, Y. Ivanisenko, and J. Weissmüller: Deforming nanoporous metal: Role of lattice coherency. Acta Mater. 57(9), 2665 (2009).

    CAS  Google Scholar 

  7. M. Caro, W.M. Mook, E.G. Fu, Y.Q. Wang, C. Sheehan, E. Martinez, J.K. Baldwin, and A. Caro: Radiation induced effects on mechanical properties of nanoporous gold foams. Appl. Phys. Lett. 104(23) (2014).

    Google Scholar 

  8. R. Liu, S. Pathak, W.M. Mook, J.K. Baldwin, N.A. Mara, and A. Antoniou: In situ frustum indentation of nanoporous copper thin films. Int. J. Plast. 98, 139 (2017).

    CAS  Google Scholar 

  9. C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86(33-35 SPEC. ISSUE), 5567 (2006).

    CAS  Google Scholar 

  10. A. Stein, B.E. Wilson, and S.G. Rudisill: Design and functionality of colloidal-crystal-templated materials–chemical applications of inverse opals. Chem. Soc. Rev. 42, 2763 (2013).

    CAS  Google Scholar 

  11. R.C. Schroden, M. Al-Daous, C.F. Blanford, and A. Stein: Optical properties of inverse opal photonic crystals. Chem. Mater, 14(8), 3305 (2002).

    CAS  Google Scholar 

  12. Z. Wang, F. Li, N.S. Ergang, and A. Stein: Effects of hierarchical architecture on electronic and mechanical properties of nanocast monolithic porous carbons and carbon-carbon nanocomposites. Chem. Mater. 18(23), 5543 (2006).

    CAS  Google Scholar 

  13. N.S. Ergang, M.A. Fierke, Z. Wang, W.H. Smyrl, and A. Stein: Fabrication of a fully infiltrated three-dimensional solid-state interpenetrating electrochemical cell. J. Electrochem. Soc. 154(12), A1135 (2007).

    CAS  Google Scholar 

  14. J.J. do Rosário, J.B. Berger, E. Lilleodden, R.M. McMeeking, and G.A. Schneider: The stiffness and strength of metamaterials based on the inverse opal architecture. Extrem. Mech. Lett. 12, 86 (2017).

    Google Scholar 

  15. Y. Toivola, A. Stein, and R.F. Cook: Depth-sensing indentation response of ordered silica foam. J. Mater. Res. 19(01), 260 (2004).

    CAS  Google Scholar 

  16. N.R. Denny, F. Li, D.J. Norris, and A. Stein: In situ high temperature TEM analysis of sintering in nanostructured tungsten and tungsten-molybdenum alloy photonic crystals. J. Mater. Chem. 20(8), 1538 (2010).

    CAS  Google Scholar 

  17. N.R. Denny, S. Han, R.T. Turgeon, J.C. Lytle, D.J. Norris, and A. Stein: Synthetic approaches toward tungsten photonic crystals for thermal emission. Proc. SPIE 6005(November), 600505 (2005).

  18. N.R. Denny, S.E. Han, D.J. Norris, and A. Stein: Effects of thermal processes on the structure of monolithic tungsten and tungsten alloy photonic crystals. Chem. Mater. 19(18), 4563 (2007).

    CAS  Google Scholar 

  19. M. Curti, G. López Robledo, P.C. dos Santos Claro, J.H. Ubogui, and C.B. Mendive: Characterization of titania inverse opals prepared by two distinct infiltration approaches. Mater. Res. Bull. 101(January), 12 (2018).

    CAS  Google Scholar 

  20. J.H. Pikul, S. Özerinç, B. Liu, R. Zhang, P.V. Braun, V.S. Deshpande, and W.P. King: High strength metallic wood from nanostructured nickel inverse opal materials. Sci. Rep. 9(719), 1 (2019).

    CAS  Google Scholar 

  21. H. Yan, C.F. Blanford, B.T. Holland, M. Parent, W.H. Smyrl, and A. Stein: A chemical synthesis of periodic macroporous NiO and metallic Ni. Adv. Mater. 11(12), 1003 (1999).

    CAS  Google Scholar 

  22. Q.N. Pham, M.T. Barako, J. Tice, and Y. Won: Microscale liquid transport in polycrystalline inverse opals across grain boundaries. Sci. Rep. 7(1), 1 (2017).

    Google Scholar 

  23. C. Zhang, J.W. Palko, M.T. Barako, M. Asheghi, J.G. Santiago, and K.E. Goodson: Enhanced capillary-fed boiling in copper inverse opals via template sintering. Adv. Funct. Mater. 28(41), 1 (2018).

    Google Scholar 

  24. C.R. Weinberger, B.L. Boyce, and C.C. Battaile: Slip planes in bcc transition metals. Int. Mater. Rev. 58(5), 296 (2013).

    CAS  Google Scholar 

  25. E.D. Hintsala, C. Teresi, A.J. Wagner, K.A. Mkhoyan, and W.W. Gerberich: Fracture transitions in iron: Strain rate and environmental effects. J. Mater. Res. 29(14), 1513 (2014).

    CAS  Google Scholar 

  26. K. Jatavallabhula and W.W. Gerberich: Fatigue thresholds and ductile-brittle transitions in Ti-30Mo. Fatigue Fract. Eng. Mater. Struct. 4(2), 173 (1981).

    CAS  Google Scholar 

  27. A.S. Wronski, A.C. Chilton, and E.M. Capron: The ductile-brittle transition in polycrystalline molybdenum. Acta Metall. 17, 751 (1969).

    CAS  Google Scholar 

  28. M.D. Harris, W.J. Grogg, A. Akoma, B.J. Hayes, R.F. Reidy, E.F. Imhoff, and P.C. Collins: Revisiting (some of) the lasting impacts of the liberty ships via a metallurgical analysis of rivets from the SS “John W. Brown”. Jom 67(12), 2965 (2015).

    Google Scholar 

  29. J.P. Bolton and C.R. Foster: Battlefield use of depleted uranium and the health of veterans. J. R. Army Med. Corps. 148(3), 221 (2002).

    CAS  Google Scholar 

  30. R.G. Abernethy: Predicting the performance of tungsten in a fusion environment: A literature review. Mater. Sci. Technol. 33(4), 388 (2017).

    CAS  Google Scholar 

  31. P. Gumbsch, J. Riedle, A. Hartmaier, and H.F. Fischmeister: Controlling factors for the brittle-to-ductile transition in tungsten single crystals. Science 282(5392), 1293 (1998).

    CAS  Google Scholar 

  32. O. El-Atwani, J. Gigax, M. Chancey, J.K. Baldwin, and S.A. Maloy: Nanomechanical properties of pristine and heavy ion irradiated nanocrystalline tungsten. Scr. Mater. 166, 159 (2019).

    CAS  Google Scholar 

  33. B.T. Holland, C.F. Blanford, T. Do, and A. Stein: Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater. 11(3), 795 (1999).

    CAS  Google Scholar 

  34. P. Jiang, J.F. Bertone, K.S. Hwang, and V.L. Colvin: Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11(8), 2132 (1999).

    CAS  Google Scholar 

  35. Y. Suh, Q. Pham, B. Shao, and Y. Won: The control of colloidal grain boundaries through evaporative vertical self-assembly. Small 15(12), 1 (2019).

    Google Scholar 

  36. M.S. Tirumkudulu and W.B. Russel: Cracking in drying latex films. Langmuir 21(11), 4938 (2005).

    CAS  Google Scholar 

  37. K.B. Singh and M.S. Tirumkudulu: Cracking in drying colloidal films. Phys. Rev. Lett. 98(21), 1 (2007).

    Google Scholar 

  38. S.G. Rudisill, N.M. Hein, D. Terzic, and A. Stein: Controlling microstructural evolution in pechini gels through the interplay between precursor complexation, step-growth polymerization, and template confinement. Chem. Mater. 25(5), 745 (2013).

    CAS  Google Scholar 

  39. J. Ast, J.J. Schwiedrzik, J. Wehrs, D. Frey, M.N. Polyakov, J. Michler, and X. Maeder: The brittle-ductile transition of tungsten single crystals at the micro-scale. Mater. Des. 152, 168 (2018).

    CAS  Google Scholar 

  40. H. Bart-Smith, A.F. Bastawros, D.R. Mumm, A.G. Evans, D.J. Sypeck, and H.N.G. Wadley: Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping. Mater. Res. Soc. Symp.–Proc. 521(10), 71 (1998).

  41. A.F. Bastawros, H. Bart-Smith, and A.G. Evans: Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. J. Mech. Phys. Solids 48(2), 301 (2000).

    CAS  Google Scholar 

  42. K.A. Issen and J.W. Rudnicki: Conditions for compaction bands in porous rock. J. Geophys. Res. Solid Earth 105(B9), 21529 (2000).

    Google Scholar 

  43. L.R. Meza, S. Das, and J.R. Greer: Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345(6202), 1322 (2014).

    CAS  Google Scholar 

  44. A.S. Schneider, D. Kaufmann, B.G. Clark, C.P. Frick, P.A. Gruber, R. Monig, O. Kraft, and E. Arzt: Correlation between critical temperature and strength of small-scale bcc pillars. Phys. Rev. Lett. 103(105501), 105501 (2009).

    CAS  Google Scholar 

  45. A.S. Schneider, C.P. Frick, B.G. Clark, P.A. Gruber, and E. Arzt: Influence of orientation on the size effect in bcc pillars with different critical temperatures. Mater. Sci. Eng. A 528(3), 1540 (2011).

    Google Scholar 

  46. Y.A. Vlasov, X.Z. Bo, J.C. Sturm, and D.J. Norris: On-chip natural assembly of silicon photonic bandgap crystals. Nature 414(6861), 289 (2001).

    CAS  Google Scholar 

  47. S. Wong, V. Kitaev, and G.A. Ozin: Colloidal crystal films: advances in universality and perfection. J. Am. Chem. Soc. 125(50), 15589 (2003).

    CAS  Google Scholar 

  48. J. Blaber, B. Adair, and A. Antoniou: Ncorr: Open-source 2D digital image correlation Matlab Software. Exp. Mech. 55(6), 1105 (2015).

    Google Scholar 

Download references

Acknowledgments

This work was supported primarily by the MRSEC Program of the National Science Foundation under Award Number DMR-1420013. The authors would like to thank Erica Lilleodden for helpful discussions related to the analysis of DIC results. The authors would also like to thank Bill Gerberich for discussions and suggestions for future work. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program. Additional thanks to Nick Seaton (UMN Characterization Facility) for assistance with SEM and FIB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stein.

Supplementary material

Supplementary material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2020.130.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmalbach, K.M., Wang, Z., Penn, R.L. et al. Temperature-dependent mechanical behavior of three-dimensionally ordered macroporous tungsten. Journal of Materials Research 35, 2556–2566 (2020). https://doi.org/10.1557/jmr.2020.130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.130

Navigation