Skip to main content
Log in

Towards understanding side-skin surface characteristics in laser powder bed fusion

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Additively manufactured parts produced via laser powder bed fusion (LPBF) have limitations in their applications due to post-processing requirements caused by high surface roughness. The characteristics of side-skin surfaces are generally assumed to be dominated by adhered powder particles. This work aims to analyze and interpret the effects of LPBF processing parameters on side-skin surfaces. As such, this work has two sections to investigate the effect of (i) core and (ii) border LPBF parameters on side-skin surface roughness for Ti–6Al–4V. The findings show that there is a robust correlation between both core and border LPBF parameters on side-skin surface morphologies. In terms of core LPBF parameters, an interaction between laser power and beam velocity is shown to influence side-skin surface roughness, resulting in Sa values in the range of 11–26 µm. Additionally, a preliminary investigation into the effect of melting mode phenomena at the border leads to a possibility of obtaining Sa values of <10 µm, with reduced effects of adhered and partially fused powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. T. Wohlers, I. Campbell, O. Diegel, J. Kowen, and R. Huff:Wohlers Report 2019: Additive Manufacturing and 3D Printing State of the Industry; Annual Worldwide Progress Report; Wohlers Associates, Fort Collins CO, 2019.

  2. Y.M. Wang, T. Voisin, J.T. McKeown, J. Ye, N.P. Calta, Z. Li, Z. Zeng, Y. Zhang, W. Chen, and T.T. Roehling: Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater.17, 63–71 (2018).

    Article  CAS  Google Scholar 

  3. M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, and B. Ahuja: Design for additive manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann.65, 737–760 (2016).

    Article  Google Scholar 

  4. F. Calignano: Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual Phys. Prototyp.13, 97–104 (2018)

  5. S. Milton, A. Morandeau, F. Chalon, and R. Leroy: Influence of finish machining on the surface integrity of Ti6Al4V produced by selective laser melting. Procedia CIRP45, 127–130 (2016).

    Article  Google Scholar 

  6. S. Marimuthu, A. Triantaphyllou, M. Antar, D. Wimpenny, H. Morton, and M. Beard: Laser polishing of selective laser melted components. Int. J. Mach. Tools Manuf.95, 97–104 (2015).

    Article  Google Scholar 

  7. S. Bose, S.F. Robertson, and A. Bandyopadhyay: Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater.66, 6–22 (2018).

    Article  CAS  Google Scholar 

  8. J. Tuomi, K.-S. Paloheimo, J. Vehviläinen, R. Björkstrand, M. Salmi, E. Huotilainen, R. Kontio, S. Rouse, I. Gibson, and A.A. Mäkitie: A novel classification and online platform for planning and documentation of medical applications of additive manufacturing. Surg. Innov.21, 553–559 (2014).

    Article  Google Scholar 

  9. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D. Hui: Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B Eng.143, 172–196 (2018).

    Article  CAS  Google Scholar 

  10. A.D. Lantada and P.L. Morgado: Rapid prototyping for biomedical engineering: Current capabilities and challenges. Annu. Rev. Biomed. Eng.14, 73–96 (2012).

    Article  CAS  Google Scholar 

  11. A. Koptioug, L.E. Rännar, M. Bäckström, and M. Cronskär: Additive manufacturing for medical and biomedical applications: Advances and challenges. Mater. Sci. Forum.783–786, 1286–1291 (2014). https://doi.org/10.4028/www.scientific.net/MSF.783-786. 1286.

  12. S. Singh, S. Ramakrishna, and R. Singh: Material issues in additive manufacturing: A review. J. Manuf. Process25, 185–200 (2017).

    Article  Google Scholar 

  13. S. Stübinger, I. Mosch, P. Robotti, M. Sidler, K. Klein, S.J. Ferguson, and B. von Rechenberg: Histological and biome-chanical analysis of porous additive manufactured implants made by direct metal laser sintering: A pilot study in sheep. J. Biomed. Mater. Res. B Appl. Biomater.101, 1154–1163 (2013).

    Article  Google Scholar 

  14. B.V. Krishna, W. Xue, S. Bose, and A. Bandyopadhyay: Engineered porous metals for implants. JOM60, 45–48 (2008).

    Article  CAS  Google Scholar 

  15. Z. Chen, X. Wu, D. Tomus, and C.H.J. Davies: Surface roughness of selective laser melted Ti-6Al-4V alloy components. Addit. Manuf.21, 91–103 (2018).

    CAS  Google Scholar 

  16. F. Calignano, D. Manfredi, E.P. Ambrosio, L. Iuliano, and P. Fino: Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int. J. Adv. Manuf. Technol.67, 2743–2751 (2013).

    Article  Google Scholar 

  17. I. Yadroitsev and I. Smurov: Surface morphology in selective laser melting of metal powders. Phys. Procedia12, 264–270 (2011).

    Article  CAS  Google Scholar 

  18. E. Abele and M. Kniepkamp: Analysis and optimisation of vertical surface roughness in micro selective laser melting. Surf. Topogr. Metrol. Prop.3, 034007 (2015).

    Article  Google Scholar 

  19. Y. Tian, D. Tomus, P. Rometsch, and X. Wu: Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit. Manuf.13, 103–112 (2017).

    CAS  Google Scholar 

  20. J.C. Fox, S.P. Moylan, and B.M. Lane: Effect of process parameters on the surface roughness of overhanging structures in laser powder bed fusion additive manufacturing. Procedia CIRP45, 131–134 (2016).

    Article  Google Scholar 

  21. C. Qiu, C. Panwisawas, M. Ward, H.C. Basoalto, J.W. Brooks, and M.M. Attallah: On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Mater.96, 72–79 (2015).

    Article  CAS  Google Scholar 

  22. B.-Q. Li, Z. Li, P. Bai, B. Liu, and Z. Kuai: Research on surface roughness of AlSi10Mg parts fabricated by laser powder bed fusion. Metals8, 524 (2018).

    Article  Google Scholar 

  23. A. Gebhardt, J.-S. Hötter, and D. Ziebura: Impact of SLM build parameters on the surface quality. RTejournal – Forum Für Rapid Technol. 2014 (2014). http://www.rtejournal.de/ausgabe11/3852.

  24. S. Patel and M. Vlasea: Melting modes in laser powder bed fusion. Materialia. 100591 (2020). https://doi.org/10.1016/j.mtla.2020.100591.

  25. T. Mukherjee, H.L. Wei, A. De, and T. DebRoy: Heat and fluid flow in additive manufacturing – Part II: Powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys. Comput. Mater. Sci.150, 369–380 (2018).

    Article  CAS  Google Scholar 

  26. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, and A.M. Rubenchik: Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol.214, 2915–2925 (2014).

    Article  Google Scholar 

  27. M. Thomas, G.J. Baxter, and I. Todd: Normalised model-based processing diagrams for additive layer manufacture of engineering alloys. Acta Mater.108, 26–35 (2016).

    Article  CAS  Google Scholar 

  28. R. Seede, D. Shoukr, B. Zhang, A. Whitt, S. Gibbons, P. Flater, A. Elwany, R. Arroyave, and I. Karaman: An ultra-high strength martensitic steel fabricated using selective laser melting additive manufacturing: Densification, microstructure, and mechanical properties. Acta Mater.186, 199–214 (2020).

    Article  CAS  Google Scholar 

  29. M.F. Ashby and K.E. Easterling: The transformation hardening of steel surfaces by laser beams—I. Hypo-eutectoid steels. Acta Metall.32, 1935–1948 (1984).

    Article  CAS  Google Scholar 

  30. J. Trapp, A.M. Rubenchik, G. Guss, and M.J. Matthews: In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing. Appl. Mater. Today9, 341–349 (2017).

    Article  Google Scholar 

  31. J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, and M.J. Matthews: Energy coupling mechanisms and scaling behavior associated with laser powder bed fusion additive manufacturing. Adv. Eng. Mater.21, 1900185 (2019). https://doi.org/10.1002/adem.201900185.

  32. P.A. Hooper: Melt pool temperature and cooling rates in laser powder bed fusion. Addit. Manuf.22, 548–559 (2018).

    CAS  Google Scholar 

  33. L. Johnson, M. Mahmoudi, B. Zhang, R. Seede, X. Huang, J.T. Maier, H.J. Maier, I. Karaman, A. Elwany, and R. Arróyave: Assessing printability maps in additive manufacturing of metal alloys. Acta Mater.176, 199–210 (2019).

    Article  CAS  Google Scholar 

  34. A. Rogalsky, I. Rishmawi, L. Brock, and M. Vlasea: Low cost irregular feed stock for laser powder bed fusion. J. Manuf. Process35, 446–456 (2018).

    Article  Google Scholar 

  35. V. Amrhein, S. Greenland, and B. McShane: Scientists rise up against statistical significance. Nature567, 305 (2019).

    Article  CAS  Google Scholar 

  36. R.L. Wasserstein, A.L. Schirm, and N.A. Lazar: Moving to a world beyond “p < 0.05.” Am. Stat.73, 1–19 (2019).

    Google Scholar 

  37. H. Pike: Statistical significance should be abandoned, say scientists. BMJ364, 11374 (2019).

    Google Scholar 

  38. M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, and W.E. King: Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater.114, 33–42 (2016).

    Article  CAS  Google Scholar 

  39. S.A. Khairallah and A. Anderson: Mesoscopic simulation model of selective laser melting of stainless steel powder. J. Mater. Process. Technol.214, 2627–2636 (2014).

    Article  CAS  Google Scholar 

  40. Y. Lee, and W. Zhang: Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing. In Int. Solid Free Form Fabr. Symp., Austin, TX, USA (2015), pp. 1154–1165.

  41. E. Yasa, J. Deckers, T. Craeghs, M. Badrossamay, and J.-P. Kruth: Investigation on occurrence of elevated edges in selective laser melting. In Int. Solid Free. Fabr. Symp., Austin, TX, USA (2009), pp. 673–685.

  42. H. Nakamura, Y. Kawahito, K. Nishimoto, and S. Katayama: Elucidation of melt flows and spatter formation mechanisms during high power laser welding of pure titanium. J. Laser Appl.27, 032012 (2015).

    Article  Google Scholar 

  43. I. Yadroitsev, P. Bertrand, and I. Smurov: Parametric analysis of the selective laser melting process. Appl. Surf. Sci.253, 8064–8069 (2007).

    Article  CAS  Google Scholar 

  44. A. Gusarov and I. Smurov: Modeling the interaction of laser radiation with powder bed at selective laser melting. Phys. Procedia5, 381–394 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the funding support received from the Federal Economic Development Agency for Southern Ontario (FedDev Ontario) Grant No. 104809 and the support from the Ontario Advanced Manufacturing Consortium (AMC). In addition, the authors would like to acknowledge the help of Jerry Ratthapakdee, Karl Rautenberg, Justin Memar, and Tatevik Minasyan in helping with the deployment and characterization of builds, and the motivation and support of the MSAM Group at the University of Waterloo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Vlasea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S., Rogalsky, A. & Vlasea, M. Towards understanding side-skin surface characteristics in laser powder bed fusion. Journal of Materials Research 35, 2055–2064 (2020). https://doi.org/10.1557/jmr.2020.125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.125

Navigation