Abstract
Herein, we report a synthetic route capable of producing superparamagnetic, stable and biocompatible glucosamine (GLU) nanocarriers, composed by colloidal iron oxide nanoparticles (ION, ~6 nm) surface-functionalized with GLU dispersed in physiological media (pH 7.2). The route consists first of the preparation of ION by aqueous alkaline co-precipitation of 1:2 Fe(II)/Fe(III) followed by surface treatment with citric acid, activation of acidic groups via carbodiimide intermediary and further amidation using GLU as the amine reactant. Results from cell viability tests performed with human dental pulp tissue cells suggest that ION–GLU nanocolloids are biocompatible and non-toxic for two different concentrations and several hours of incubation. Moreover, optical microscopy shows that ION–GLU adsorbs at the cells walls and also transposes them, reaching cytoplasm and nucleus as well. All findings point out the promising use of ION–GLU as biocompatible nanocarriers for GLU delivery such as in articulation diseases.
Similar content being viewed by others
References
S. Dahmer and R.M. Schiller: Glucosamine. Am. Fam. Physician78, 471 (2008).
E.C. Huskisson: Glucosamine and chondroitin for osteoarthritis. J. Int. Med. Res.36, 1161 (2008).
S.G. Kirkham and R.K. Samarasinghe: Review article: Glucosamine. J. Orthop. Surg.17, 72 (2009).
J. Hua, K. Sakamoto, and I. Nagaoka: Inhibitory actions of glucosamine, a therapeutic agent for osteoarthritis, on the functions of neutrophils. J. Leukocyte Biol.71, 632 (2002).
K.L. Miller and D.O. Clegg: Glucosamine and chondroitin sulfate. Rheum. Dis. Clin. N. Am.37, 103 (2011).
X. Liu, G.C. Machado, J.P. Eyles, V. Ravi, and D.J. Hunter: Dietary supplements for treating osteoarthritis: A systematic review and meta-analysis. Br. J. Sports Med.52, 167 (2019).
F. Zahedipour, R. Dalirfardoueib, G. Karimic, and K. Jamialahmadi: Molecular mechanisms of anticancer effects of glucosamine. Biomed. Pharmacother.95, 1051 (2017).
M. Cucchiarini and H. Madry: Genetic modification of mesenchymal stem cells for cartilage repair. Bio-Med. Mater. Eng.20, 135 (2010).
C.G. Jackson, A.H. Plaas, J.D. Sandy, C. Hua, S. Kim-Rolands, J.G. Barnhill, C.L. Harris, and D.O. Clegg: The human pharmacokinetics of oral ingestion of glucosamine and chondroitin sulfate taken separately or in combination. Osteoarthr. Cartil.18, 297 (2010).
I. Setnikar, M. Pacini, and L. Revel: Antiarthritic effects of glucosamine sulfate studied in animal models. Arzneim.-Forsch.41, 542 (1991).
M.A.G. Soler and L.G. Paterno: Magnetic nanomaterials. In Nanostructures, F. Leite, M. Ferreira, and O.N. Oliveira Jr., eds. (Elsevier, Oxford, United Kingdom, 2017); pp. 147–186.
M.L. Carneiro, E.S. Nunes, R.C. Peixoto, R.G. Oliveira, L.H. Lourenço, I.C. Da Silva, A.R. Simioni, A.C. Tedesco, A.R. De Souza, and Z.G. Lacava: Free Rhodium (II) citrate and rhodium (II) citrate magnetic carriers as potential strategies for breast cancer therapy. J. Nanobiotechnol.9, 11 (2011).
A. Zhua, X. Luo, and S. Dai: Chitosan-poly(acrylic acid) complex modified paramagnetic Fe3O4 nanoparticles for camptothecin loading and release. J. Mater. Res.24, 2307 (2009).
A.H. Haghighi, Z. Faghih, M.T. Khorasani, and F. Farjadian: Antibody conjugated onto surface modified magnetic nanoparticles for separation of HER2+ breast cancer cells. J. Magn. Magn. Mater.490, 165479 (2019).
L.M.R. Rivera, L.G. Paterno, N.L. Chaves, D. Gregurec, S.N. Báo, S.E. Moya, M. Jain, R.B. Azevedo, P.C. Morais, and M.A.G. Soler: Biocompatible superparamagnetic carriers of chondroitin sulfate. Mater. Res. Express6, 066106 (2019).
V. Kuncser, D. Chipara, K.S. Martirosyan, G.A. Schinteie, E. Ibrahim, and M. Chipara: Magnetic properties and thermal stability of polyvinylidene fluoride—Fe2O3 nanocomposites. J. Mater. Res.35, 132 (2020).
N. Bao and A. Gupta: Self-assembly of superparamagnetic nanoparticles. J. Mater. Res.26, 111 (2011).
M.A.G. Soler, L.G. Paterno, J.P. Sinnecker, J.G. Wen, E.H.C.P. Sinnecker, R.F. Neumann, M. Bahiana, M.A. Novak, and P.C. Morais: Assembly of c-Fe2O3/polyaniline nanofilms with tuned dipolar interaction. J. Nanopart. Res.14, 653 (2012).
C.J. Letti, L.G. Paterno, M.A. Pereira-Da-Silva, P.C. Morais, and M.A.G. Soler: The role of polymer films on the oxidation of magnetite nanoparticles. J. Solid State Chem.246, 57 (2017).
M.A.G. Soler: Layer-by-layer assembled iron oxide based polymeric nanocomposites. J. Magn. Magn. Mater.467, 37 (2018).
W.R. Viali, G.B. Alcantara, P.P. Sartoratto, M.A.G. Soler, E. Mosiniewicz-Szablewska, B. Andrzejewski, and P.C. Morais: Investigation of the molecular surface coating on the stability of insulating magnetic oils. J. Phys. Chem. C114, 179 (2009).
A. Kumar, P.K. Jena, S. Behera, R.F. Lockey, S. Mohapatra, and S. Mohapatra: Multifunctional magnetic nanoparticles for targeted delivery of drug. Nanomedicine6, 64 (2010).
G.B. Alcantara, L.G. Paterno, F.J. Fonseca, M.A. Pereira-Da-Silva, P.C. Morais, and M.A.G. Soler: Layer-by-layer assembled cobalt ferrite nanoparticles for chemical sensing. J. Nanofluids2, 175 (2013).
G.B. Alcantara, L.G. Paterno, F.J. Fonseca, M.A. Pereira-Da-Silva, P.C. Morais, and M.A.G. Soler: Dielectric properties of cobalt ferrite nanoparticles in ultrathin nanocomposite films. Phys. Chem. Chem. Phys15, 19853 (2013).
V. Mahendran and J. Philip: Non-enzymatic glucose detection using magnetic nanoemulsions. Appl. Phys. Lett.105, 123110 (2014).
E. Fantechi, C. Innocenti, M. Zanardelli, M. Fittipaldi, E. Falvo, M. Carbo, V. Shullani, L.C. Mannelli, C. Ghelardini, A.M. Ferretti, A. Ponti, C. Sangregorio, and P. Ceci: A smart platform for hyperthermia application in cancer treatment: Cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS Nano8, 4705 (2014).
W. Aadinath, T. Ghosh, and C. Anandharamakrishnan: Multimodal magnetic nano-carriers for cancer treatment: Challenges and advancements. J. Magn. Magn. Mater.401, 1159 (2016).
C.J. Letti, K.A. Costa, M.A. Gross, L.G. Paterno, M.A. Pereira-Da-Silva, P.C. Morais, and M.A.G. Soler: Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites. Adv. Nano Res.5, 215 (2017).
Z. Gao, T. Ma, E. Zhao, D. Docter, W. Yang, R.H. Stauber, and M. Gao: Small is smarter: Nano MRI contrast agents–advantages and recent achievements. Small12, 556 (2016).
H. Nosrati, E. Javani, M. Salehiabar, H.K. Manjili, S. Davaran, and H. Danafar: Biocompatibility and anticancer activity of L-phenyl alanine-coated iron oxide magnetic nanoparticles as potential chrysin delivery system. J. Mater. Res.33, 1602 (2018).
W. Ling, M. Wang, C. Xiong, D. Xie, Q. Chen, X. Chu, X. Qiu, Y. Li, and X. Xiao: Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res.34, 1828 (2019).
B. Srinivasan and X. Huang: Functionalization of magnetic nanoparticles with organic molecules: Loading level determination and evaluation of linker length effect on immobilization. Chirality20, 265 (2008).
E. Valero, S. Tambalo, P. Marzola, M. Ortega-Munoz, F.J. López-Jaramillo, F. Santoyo-González, J. Dios López, J.J. Delgado, J.J. Calvino, and R. Cuesta: Magnetic nanoparticles-templated assembly of protein subunits: A new platform for carbohydrate-based MRI nanoprobes. J. Am. Chem. Soc.133, 4889 (2011).
K. Narayanan, A.W. Lin, Y. Zheng, N. Erathodiyil, A.C. Wan, and J.Y. Ying: Glucosamine-conjugated nanoparticles for the separation of insulin-secreting beta cells. Adv. Healthcare Mater.2, 1198 (2013).
X. Gong, F. Wang, Y. Huang, X. Lin, C. Chen, F. Wang, and L. Yang: Magnetic-targeting of polyethylenimine-wrapped iron oxide nanoparticle labeled chondrocytes in a rabbit articular cartilage defect model. RSC Adv.8, 7633 (2018).
W. Wu, Z. Wu, T. Yu, C. Jiang, and W.-S. Kim: Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater.16, 023501 (2015).
S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R.N. Muller: Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev.108, 2064 (2008).
R.N. Goldberg, N. Kishore, and R.M. Lennen: Thermodynamic quantities for the ionization reactions of buffers. J. Phys. Chem. Ref. Data31, 231 (2002).
H.A. Sturges: The choice of a class interval. J. Am. Stat. Assoc.21, 65 (1926).
A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. Malhotra: Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron.24, 676 (2008).
H.-M. Yang, H.J. Lee, K.-S. Jang, C.W. Park, H.W. Yang, W. Do Heo, and J.-D. Kim: Poly (amino acid)-coated iron oxide nano-particles as ultra-small magnetic resonance probes. J. Mater.Chem.19, 4566 (2009).
D. Yoo, C. Lee, B. Seo, and Y. Piao: One pot synthesis of amine-functionalized and angular-shaped superparamagnetic iron oxide nanoparticles for MR/fluorescence bimodal imaging application. Rsc Advances7, 12876 (2017).
F. Pompeo and D.E. Resasco: Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett.2, 369 (2002).
J. Degenhardt, and A.J. Mcquillan: In situ ATR-FTIR spectroscopic study of adsorption of perchlorate, sulfate, and thiosulfate ions onto chromium(III) oxide hydroxide thin films. Langmuir15, 4595 (1999). 4595.
D.L. Lewis, E.D. Estes, and D.J. Hodgson: The infrared spectra of coordinated perchlorates. J. Cryst. Mol. Struct.5, 67 (1975).
M.S.U. Ahmed, A.B. Salam, K.W. Clayton Yates, J. Jaynes, T. Turner, and M.O. Abdalla: Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer. Int. J. Nanomed.12, 6973 (2017).
M. Veerapandian, S.K. Lim, H.M. Nam, G. Kuppannan, and K.S. Yun: Glucosamine-functionalized silver glyconanoparticles: Characterization and antibacterial activity. Anal. Bioanal. Chem.398, 867 (2010).
T. Yamashita and P. Hayes: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci.254, 2441 (2008).
H. Wu, G. Gao, X. Zhou, Y. Zhang, and S. Guo: Control on the formation of Fe3O4 nanoparticles on chemically reduced graphene oxide surfaces. Cryst. Eng. Comm.14, 499 (2012).
H. Weaver, J.F. Weaver, G.B. Hoflund, and G.N. Salaita: Electron energy loss spectroscopic investigation of Ni metal and NiO before and after surface reduction by Ar+ bombardment. J. Electron Spectros. Relat. Phenomena134, 139 (2004).
J.F. Moulder: Handbook of X-ray photoelectron spectroscopy. In Physical Electronics Division, J. Chastain, ed. (Perkin-Elmer Corporation, Minnesota, USA, 1992).
P.R. Norton, R.L. Tapping, and J.W. Goodale: A photoemission study of the interaction of Ni (100),(110) and (111) surfaces with oxygen. Surf. Sci.65, 13 (1977).
D. Wilson and M.A. Langell: XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl. Surf. Sci.303, 6 (2014).
A.C. Silva, T.R. Oliveira, J.B. Mamani, S.M.F. Malheiros, L. Malavolta, L.F. Pavon, T.T. Sibov, E. Amaro Jr., A. Tannús, E.L.G. Vidoto, M.J. Martins, R.S. Santos, and L.F. Gamarra: Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int. J. Nanomed6, 591 (2011).
A.D. Franklin and A.E. Berkowitz: The approach to saturation in dilute ferromagnetics. Phys. Rev.89, 1171 (1953).
K.V.P.M. Shafi, A. Ulman, X.Z. Yan, N.L. Yang, C. Estournes, H. White, and M. Rafailovich: Sonochemical synthesis of functionalized amorphous iron oxide nanoparticles. Langmuir17, 5093 (2001).
M. Mikhaylova, D.K. Kim, C.C. Berry, A. Zagorodni, M. Toprak, A.S. Curtis, and M. Muhammed: BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem. Mater.16, 2344 (2004).
L.G. Paterno, F.J. Fonseca, G.B. Alcantara, M.A.G. Soler, P.C. Morais, J.P. Sinnecker, M.A. Novak, E.C.D. Lima, F.L. Leite, and L.H.C. Mattoso: Fabrication and characterization of nanostructured conducting polymer films containing magnetic nanoparticles. Thin Solid Films517, 1753 (2009).
M. Aslam, E.A. Schultz, T. Sun, T. Meade, and V.P. Dravid: Synthesis of amine-stabilized aqueous colloidal iron oxide nano-particles. Cryst. Growth Des.7, 471 (2007).
L. Yang, Z. Cao, H.K. Sajja, H. Mao, L. Wang, H. Geng, H. Xu, T. Jiang, W.C. Wood, and S. Nie: Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J. Biomed. Nanotechnol.4, 439 (2008).
B. Alberts: Essential Cell Biology (Garland Science, New York, NY, 2013).
J.-C. Bacri, R. Perzynski, D. Salin, V. Cabuil, and R. Massart: Ionic ferrofluids: A crossing of chemistry and physics. J. Magn. Magn. Mater.85, 27 (1990).
M.A.G. Soler and Q. Fanyao: Raman Spectroscopy of Iron Oxide Nanoparticles. In Raman Spectroscopy of Nanomaterials Characterization, C.S.S.R. Kumar, ed. (Springer, Berlin, 2012); pp. 379–416.
S.W. Silva, T.F.O. Melo, M.A.G. Soler, E.C.D. Lima, A.F. Da Silva, and P.C. Morais: Stability of citrate-coated magnetite and cobalt-ferrite nanoparticles under laser irradiation: A Raman spectroscopy investigation. IEEE Trans. Magn.39, 2645 (2003).
O.L. Pereira, J.P. Longo, and R.B. Azevedo: Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch. Oral Biol.57, 1079 (2012).
Acknowledgments
The financial supports from the Brazilian agencies MCT-CNPq (Process 424152/2016-9), FINEP, FAP-DF (Process: 193.001.358/2016), FINATEC and CAPES are gratefully acknowledged. We are grateful to Dr. M. J. Araújo Sales, Instituto de Quimica - Universidade de Brasília, for her support with TGA measurements. Also, Dr. O. R. Pires Júnior, Instituto de Ciências Biológicas - Universidade de Brasília, is acknowledged for his support with sample lyophilization.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Rivera, L.M.R., Machado, J.G., Chandra Mathpal, M. et al. Functional glucosamine-iron oxide nanocarriers. Journal of Materials Research 35, 1726–1737 (2020). https://doi.org/10.1557/jmr.2020.121
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2020.121