Skip to main content
Log in

Glucose-sensing properties of citrate-functionalized maghemite nanoparticle–modified indium tin oxide electrodes

  • Biomedical Materials, Regenerative Medicine and Drug Delivery
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Iron oxide nanoparticles presenting colloidal stability in water were prepared through precipitation and then surface-functionalized with varying citric acid (CA) concentrations (0.10, 0.25, 0.50, and 0.70 g/mL). CA introduced functionality and minimized agglomeration. Iron oxide nanoparticles with colloidal stability in water at physiological pH were obtained after functionalization with 0.25–0.70 g/mL CA, whereas iron oxide nanoparticles without stability in water were obtained after functionalization with 0.10 g/mL CA. An electrode for glucose detection was fabricated by self-assembling colloidal-stable γ-Fe2O3 NP–CA in water on indium tin oxide (ITO) glass, followed by a glucose oxidase (GOx) and Nafion layer. The optimal functionalization of the γ-Fe2O3 NPs was obtained at a CA concentration of 0.25 g/mL. The electrochemical properties and electrocatalytic behavior of the modified electrode designated as Nafion/GOx/γ-Fe2O3 NP–0.25 CA/ITO were then evaluated. The electrode showed high sensitivity for glucose detection of 995.57 and 5.81 µA/(mM cm2) within the linear ranges of 0.1–5.0 µM and 5.0 µM–20.0 mM, respectively. The modified electrode also demonstrated a low limit of detection, good repeatability of 2.5% (n = 10), and sufficient reproducibility of 3.2% (n = 5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

CS:

Chitosan

IONPs:

Iron oxide nanoparticles

GOD and GOx:

Glucose oxidase

Pt:

Platinum electrode

MnO2:

Manganese oxide

CA:

Citric acid

SPCE:

Screen-printed carbon electrode

HRP:

Horseradish peroxidase

Au:

Gold nanoparticles

SiO2:

Silica

ITO:

Indium tin oxide electrode

References

  1. A. Hayat and J.L. Marty: Disposable screen printed electrochemical sensors: Tools for environmental monitoring. Sensors 14, 10432 (2014).

    Article  CAS  Google Scholar 

  2. M. Baghayeri, H. Veisi, and M. Ghanei-Motlagh: Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sens. Actuators, B 249, 321 (2017).

    Article  CAS  Google Scholar 

  3. J. Xie, S. Wang, L. Aryasomayajula, and V.K. Varadan: Effect of nanomaterials in platinum-decorated carbon nanotube paste-based electrodes for amperometric glucose detection. J. Mater. Res. 23, 1457 (2011).

    Article  Google Scholar 

  4. C. Ravi Dhas, R. Venkatesh, D. David Kirubakaran, J. Princy Merlin, B. Subramanian, and A. Moses Ezhil Raj: Electrochemical sensing of glucose and photocatalytic performance of porous Co3O4 films by nebulizer spray technique. Mater. Chem. Phys. 186, 561 (2017).

    Article  Google Scholar 

  5. P. Annu, S. Sharma, R. Jain, and A.N. Raja: Review—pencil graphite electrode: An emerging sensing material. J. Electrochem. Soc. 167, 037501 (2019).

    Article  Google Scholar 

  6. X. Chen, J. Zhu, Z. Chen, C. Xu, Y. Wang, and C. Yao: A novel bienzyme glucose biosensor based on three-layer Au–Fe3O4@SiO2 magnetic nanocomposite. Sens. Actuators, B 159, 220 (2011).

    Article  CAS  Google Scholar 

  7. T-W. Chen, S. Chinnapaiyan, S-M. Chen, M. Ajmal Ali, M.S. Elshikh, and A. Hossam Mahmoud: Facile synthesis of copper ferrite nanoparticles with chitosan composite for high-performance electrochemical sensor. Ultrason. Sonochem. 63, 104902 (2020).

    Article  CAS  Google Scholar 

  8. N. Sanaeifar, M. Rabiee, M. Abdolrahim, M. Tahriri, D. Vashaee, and L. Tayebi: A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Anal. Biochem. 519, 19 (2017).

    Article  CAS  Google Scholar 

  9. M. Hasanzadeh, N. Shadjou, and M. de la Guardia: Iron and iron-oxide magnetic nanoparticles as signal-amplification elements in electrochemical biosensing. Trac. Trends Anal. Chem. 72, 1 (2015).

    Article  CAS  Google Scholar 

  10. L. Yang, X. Ren, F. Tang, and L. Zhang: A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film. Biosens. Bioelectron. 25, 889 (2009).

    Article  Google Scholar 

  11. P. Norouzi, F. Faridbod, B. Larijani, and M.R. Ganjali: Glucose Biosensor based on mwcnts-gold nanoparticles in a nafion film on the glassy carbon electrode using flow injection FFT continuous cyclic voltammetry. Int. J. Electrochem. Sci. 5, 1213 (2010).

    CAS  Google Scholar 

  12. E. Tombácz, K. Farkas, I. Földesi, M. Szekeres, E. Illés, I.Y. Tóth, D. Nesztor, and T. Szabó: Polyelectrolyte coating on superparamagnetic iron oxide nanoparticles as interface between magnetic core and biorelevant media. Interface Focus 6, 20160068 (2016).

    Article  Google Scholar 

  13. Z. Yang, C. Zhang, J. Zhang, and W. Bai: Potentiometric glucose biosensor based on core–shell Fe3O4–enzyme–polypyrrole nanoparticles. Biosens. Bioelectron. 51, 268 (2014).

    Article  CAS  Google Scholar 

  14. A.M.A. Abdul Amir Al-Mokaram, R. Yahya, M.M. Abdi, and H.N. Muhammad Ekramul Mahmud: One-step electrochemical deposition of polypyrrole chitosan iron oxide nanocomposite films for non-enzymatic glucose biosensor. Mater. Lett. 183, 90 (2016).

    Article  Google Scholar 

  15. W. Ling, M. Wang, C. Xiong, D. Xie, Q. Chen, X. Chu, X. Qiu, Y. Li, and X. Xiao: Synthesis, surface modification, and applications of magnetic iron oxide nanoparticles. J. Mater. Res. 34, 1828 (2019).

    Article  CAS  Google Scholar 

  16. S. Nigam, K.C. Barick, and D. Bahadur: Development of citrate-stabilized Fe3O4 nanoparticles: Conjugation and release of doxorubicin for therapeutic applications. J. Magn. Magn. Mater. 323, 237 (2011).

    Article  CAS  Google Scholar 

  17. A. Sharma, D. Baral, K. Rawat, P. R Solanki, and H.B. Bohidar: Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection. Nanotechnology 26, 175302 (2015).

    Article  Google Scholar 

  18. Y. Wu, Y. Ma, G. Xu, F. Wei, Y. Ma, Q. Song, X. Wang, T. Tang, Y. Song, M. Shi, X. Xu, and Q. Hu: Metal-organic framework coated Fe3O4 magnetic nanoparticles with peroxidase-like activity for colorimetric sensing of cholesterol. Sens. Actuators, B 249, 195 (2017).

    Article  CAS  Google Scholar 

  19. N. Mohamad Nor, K. Abdul Razak, and Z. Lockman: Physical and electrochemical properties of iron oxide nanoparticles-modified electrode for amperometric glucose detection. Electrochim. Acta 248, 160 (2017).

    Article  Google Scholar 

  20. N. Mohamad Nor, Z. Lockman, and K.A. Razak: Study of ITO glass electrode modified with iron oxide nanoparticles and nafion for glucose biosensor application. Procedia Chem. 19, 50 (2016).

    Article  CAS  Google Scholar 

  21. S. Alibeigi and M.R. Vaezi: Phase transformation of iron oxide nanoparticles by varying the molar ratio of Fe2+:Fe3+. Chem. Eng. Technol. 31, 1591 (2008).

    Article  CAS  Google Scholar 

  22. J. Polte: Fundamental growth principles of colloidal metal nanoparticles: A new perspective. CrystEngComm 17, 6809–6830 (2015).

    Article  CAS  Google Scholar 

  23. S. Munjal, N. Khare, B. Sivakumar, and D. Nair Sakthikumar: Citric acid coated CoFe2O4 nanoparticles transformed through rapid mechanochemical ligand exchange for efficient magnetic hyperthermia applications. J. Magn. Magn. Mater. 477, 388 (2019).

    Article  CAS  Google Scholar 

  24. Y. Sahoo, A. Goodarzi, M.T. Swihart, T.Y. Ohulchanskyy, N. Kaur, E.P. Furlani, and P.N. Prasad: Aqueous ferrofluid of magnetite Nanoparticles: Fluorescence labeling and magnetophoretic control. J. Phys. Chem. B. 109, 3879 (2005).

    Article  CAS  Google Scholar 

  25. E. Cheraghipour, S. Javadpour, and A. Mehdizadeh: Citrate capped superparamagnetic iron oxide nanoparticles used for hyperthermia therapy. J. Biomed. Eng. 5, 715 (2012).

    Google Scholar 

  26. P.N. Olvera-Venegas, L.E. Hernández Cruz, and G.T. Lapidus: Leaching of iron oxides from kaolin: Synergistic effect of citrate-thiosulfate and kinetic analysis. Hydrometallurgy 171, 16 (2017).

    Article  CAS  Google Scholar 

  27. I.T. Lucas, S. Durand-Vidal, E. Dubois, J. Chevalet, and P. Turq: Surface charge density of maghemite nanoparticles: Role of electrostatics in the proton exchange. J. Phys. Chem. C 111, 18568 (2007).

    Article  CAS  Google Scholar 

  28. M.E. De Sousa, M.B. Fernández van Raap, P.C. Rivas, P. Mendoza Zélis, P. Girardin, G.A. Pasquevich, J.L. Alessandrini, D. Muraca, and F.H. Sánchez: Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia. J. Phys. Chem. C 117, 5436 (2013).

    Article  Google Scholar 

  29. A. Pajor-Świerzy, Y. Farraj, A. Kamyshny, and S. Magdassi: Effect of carboxylic acids on conductivity of metallic films formed by inks based on copper@silver core–shell particles. Colloids Surf., A 522, 320 (2017).

    Article  Google Scholar 

  30. A. Sharma, D. Baral, H.B. Bohidar, and P.R. Solanki: Oxalic acid capped iron oxide nanorods as a sensing platform. Chem. Biol. Interact. 238, 129 (2015).

    Article  CAS  Google Scholar 

  31. A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B.D. Malhotra: Iron oxide nanoparticles–chitosan composite based glucose biosensor. Biosens. Bioelectron. 24, 676 (2008).

    Article  CAS  Google Scholar 

  32. M. Cui, B. Xu, C. Hu, H.B. Shao, and L. Qu: Direct electrochemistry and electrocatalysis of glucose oxidase on three-dimensional interpenetrating, porous graphene modified electrode. Electrochim. Acta 98, 48 (2013).

    Article  CAS  Google Scholar 

  33. C. Karuppiah, S. Palanisamy, S-M. Chen, V. Veeramani, and P. Periakaruppan: Direct electrochemistry of glucose oxidase and sensing glucose using a screen-printed carbon electrode modified with graphite nanosheets and zinc oxide nanoparticles. Microchim. Acta 181, 1843 (2014).

    Article  CAS  Google Scholar 

  34. H-P. Peng, R-P. Liang, L. Zhang, and J-D. Qiu: Facile preparation of novel core–shell enzyme–Au–polydopamine–Fe3O4 magnetic bionanoparticles for glucosesensor. Biosens. Bioelectron. 42, 293 (2013).

    Article  CAS  Google Scholar 

  35. T.T. Baby and S. Ramaprabhu: Non-enzymatic glucose and cholesterol biosensors based on silica coated nano iron oxide dispersed multiwalled carbon nanotubes, edited by IEEE Xplore, Presented at the Nanoscience, Technology and Societal Implications (NSTSI), 2011 International Conference, Bhubaneswar, 2011; p. 1.

  36. L.M. Rossi, A.D. Quach, and Z. Rosenzweig: Glucose oxidase–magnetite nanoparticle bioconjugate for glucose sensing. Anal. Bioanal. Chem. 380, 606 (2004).

    Article  CAS  Google Scholar 

  37. N. Mohamad Nor, K. Abdul Razak, S.C. Tan, and R. Noordin: Properties of surface functionalized iron oxide nanoparticles (ferrofluid) conjugated antibody for lateral flow immunoassay application. J. Alloys Compd. 538, 100 (2012).

    Article  Google Scholar 

  38. M.D. Abramoff, P.J. Magalhães, and S.J. Ram: Image processing with ImageJ. Biophot. Int. 11, 36 (2004).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from RU Top Down research grant 1001/Pbahan/870049. One of the authors also acknowledges the financial support from MyBrain. We also thank the technical support from the School of Materials and Mineral Resources Engineering and Institute for Research in Molecular Medicine, Universiti Sains Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairunisak Abdul Razak.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nor, N.M., Razak, K.A. & Lockman, Z. Glucose-sensing properties of citrate-functionalized maghemite nanoparticle–modified indium tin oxide electrodes. Journal of Materials Research 35, 1279–1289 (2020). https://doi.org/10.1557/jmr.2020.104

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.104

Navigation