Skip to main content
Log in

Impact of linker positions for thieno[3,2-b]thiophene in wide band gap benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers

  • Organic and Hybrid Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Two wide band gap conjugated polymers, namely PBDT-TT25 and PBDT-TT36, derived from (4,8-bis(4,5-dioctyl-thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl)bis(trimethylstannane) with 2,5-dibromothieno[3,2-b]thiophene (TT25) or 3,6-dibromothieno[3,2-b]thiophene (TT36), have been synthesized by simply altering the linker positions of thieno[3,2-b]thiophene unit. The impact of linker positions on the energy levels, aggregation, active layer morphology, and optical and photovoltaic properties was evaluated systemically. We found that the absorption was greatly broadened, and the highest occupied molecular orbital (HOMO) energy level was elevated as the result of the significantly reduced twist angle on the polymer backbone when the linker positions changed from 3,6-isomer to 2,5-isomer. Therefore, the optimal inverted polymer solar cells exhibited a 1.87 times enhancement in power conversion efficiencies (PCE), which was mainly ascribed to the higher short circuit current densities (JSC) and fill factor (FF) of the devices mainly benefited from the widened, stronger absorption, higher hole mobility, and more ordered structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, and A.J. Heeger: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222 (2007).

    Article  CAS  Google Scholar 

  2. J.A. Bartelt, Z.M. Beiley, E.T. Hoke, W.R. Mateker, J.D. Douglas, B.A. Collins, J.R. Tumbleston, K.R. Graham, A. Amassian, H. Ade, J.M.J. Fréchet, M.F. Toney, and M.D. McGehee: The importance of fullerene percolation in the mixed regions of polymer-fullerene bulk heterojunction solar cells. Adv. Energy Mater. 3, 364 (2013).

    Article  CAS  Google Scholar 

  3. L. Huo, J. Hou, S. Zhang, H-Y. Chen, and Y. Yang: A polybenzo[1,2-b:4,5-b′] dithiophene derivative with deep homo level and its application in high-performance polymer solar cells. Angew. Chem., Int. Ed. 122, 1542 (2010).

    Article  Google Scholar 

  4. H. Zhou, L. Yang, S.C. Price, K.J. Knight, and W. You: Enhanced photovoltaic performance of low-bandgap polymers with deep lumo levels. Angew. Chem., Int. Ed. 122, 8164 (2010).

    Article  Google Scholar 

  5. J. Li, Z. Liang, Y. Wang, H. Li, J. Tong, X. Bao, and Y. Xia: Enhanced efficiency of polymer solar cells through synergistic optimization of mobility and tuning donor alloys by adding high-mobility conjugated polymers. J. Mater. Chem. C 6, 11015 (2018).

    Article  CAS  Google Scholar 

  6. W. Chen, G. Huang, X. Li, H. Wang, Y. Li, H. Jiang, N. Zheng, and R. Yang: Side-chain-promoted benzodithiophene-based conjugated polymers toward striking enhancement of photovoltaic properties for polymer solar cells. ACS Appl. Mater. Interfaces 10, 42747 (2018).

    Article  CAS  Google Scholar 

  7. W. Chen, H. Jiang, G. Huang, J. Zhang, M. Cai, X. Wan, and R. Yang: High-Efficiency ternary polymer solar cells based on intense FRET energy transfer process. Sol. RRL 2, 1800101 (2018).

    Article  CAS  Google Scholar 

  8. J. Li, Y. Wang, Z. Liang, N. Wang, J. Tong, C. Yang, X. Bao, and Y. Xia: Enhanced organic photovoltaic performance through modulating vertical composition distribution and promoting crystallinity of the photoactive layer by diphenyl sulfide additive. ACS Appl. Mater. Interfaces 11, 7022 (2019).

    Article  CAS  Google Scholar 

  9. G. Yu, J. Gao, J.C. Hummelen, F. Wudi, and A.J. Heeger: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789 (1995).

    Article  CAS  Google Scholar 

  10. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    Article  CAS  Google Scholar 

  11. S. Zhang, L. Ye, W. Zhao, B. Yang, Q. Wang, and J. Hou: Realizing over 10% efficiency in polymer solar cell by device optimization. Sci. China: Chem. 58, 248 (2015).

    Article  CAS  Google Scholar 

  12. Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T.P. Russell, and Y. Cao: Single-junction polymer solar cells with high efficiency and photovoltage. Nat. Photonics 9, 173 (2015).

    Google Scholar 

  13. J.R. Tumbleston, B.A. Collins, L. Yang, A.C. Stuart, E. Gann, W. Ma, W. You, and H. Ade: The influence of molecular orientation on organic bulk heterojunction solar cells. Nat. Photonics 8, 385 (2014).

    Article  CAS  Google Scholar 

  14. G. Zhang, K. Zhang, Q. Yin, X. Jiang, Z. Wang, J. Xin, W. Ma, H. Yan, F. Huang, and Y. Cao: High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. J. Am. Chem. Soc. 139, 2387 (2017).

    Article  CAS  Google Scholar 

  15. M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H. Yip, X. Peng, Y. Cao, and Y. Chen: Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics 11, 85 (2016).

    Article  CAS  Google Scholar 

  16. J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, and H. Yan: Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1, 15027 (2016).

    Article  CAS  Google Scholar 

  17. Y. An, X. Liao, L. Chen, J. Yin, Q. Ai, Q. Xie, B. Huang, A.K.Y. Jen, and Y. Chen: Nonhalogen solvent-processed asymmetric wide-bandgap polymers for nonfullerene organic solar cells with over 10% efficiency. Adv. Funct. Mater. 28, 1706517 (2018).

    Article  CAS  Google Scholar 

  18. L. Lan, Z. Chen, Q. Hu, L. Ying, R. Zhu, F. Liu, T.P. Russell, F. Huang, and Y. Cao: High-performance polymer solar cells based on a wide-bandgap polymer containing pyrrolo[3,4-f]benzotriazole-5,7-dione with a power conversion efficiency of 8.63%. Adv. Sci. 3, 1600032 (2016).

    Article  CAS  Google Scholar 

  19. K. Feng, G. Yang, X. Xu, G. Zhang, H. Yan, O. Awartani, L. Ye, H. Ade, Y. Li, and Q. Peng: Realizing over 13% efficiency in green-solvent-processed nonfullerene organic solar cells enabled by 1,3,4-thiadiazole-based wide-bandgap copolymers. Adv. Energy Mater. 8, 1602773 (2018).

    Article  CAS  Google Scholar 

  20. Y. Cai, L. Huo, and Y. Sun: Recent advances in wide-bandgap photovoltaic polymers. Adv. Mater. 29, 1605437 (2017).

    Article  CAS  Google Scholar 

  21. H. Pan, Y. Wu, Y. Li, P. Liu, B.S. Ong, S. Zhu, and G. Xu: Benzodithiophene copolymer-a low-temperature, solution-processed high-performance semiconductor for thin-film transistors. Adv. Funct. Mater. 17, 3574 (2007).

    Article  CAS  Google Scholar 

  22. C. Wang, H. Dong, W. Hu, Y. Liu, and D. Zhu: Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem. Rev. 112, 2208 (2012).

    Article  CAS  Google Scholar 

  23. H. Yao, L. Ye, H. Zhang, S. Li, S. Zhang, and J. Hou: Molecular design of benzodithiophene-based organic photovoltaic materials. Chem. Rev. 116, 7397 (2016).

    Article  CAS  Google Scholar 

  24. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M.L. Chabinyc, R.J. Kline, M.D. Mcgehee, and M.F. Toney: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328 (2006).

    Article  CAS  Google Scholar 

  25. S. Zhang, B. Yang, D. Liu, H. Zhang, W. Zhao, Q. Wang, C. He, and J. Hou: Correlations among chemical structure, backbone conformation, and morphology in two highly efficient photovoltaic polymer materials. Macromolecules 49, 120 (2016).

    Article  CAS  Google Scholar 

  26. Y. Jin, Z. Chen, S. Dong, N. Zheng, L. Ying, X. Jiang, F. Liu, F. Huang, and Y. Cao: A novel naphtho[1,2-c:5,6-c′]bis([1,2,5]thiadiazole)-based narrow bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv. Mater. 28, 9811 (2016).

    Article  CAS  Google Scholar 

  27. J. Tong, J. Li, P. Zhang, X. Ma, M. Wang, L. An, J. Sun, P. Guo, C. Yang, and Y. Xia: Naphtho[1,2-c:5,6-c′]bis[1,2,5]-thiadiazole-based conjugated polymers consisting of oligothiophenes for efficient polymer solar cells. Polymer 121, 183 (2017).

    Article  CAS  Google Scholar 

  28. H. Zhou, L. Yang, and W. You: Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45, 607 (2012).

    Article  CAS  Google Scholar 

  29. H. Xie, K. Zhang, C. Duan, S. Liu, F. Huang, and Y. Cao: New acceptor-pended conjugated polymers based on 3,6- and 2,7-carbazole for polymer solar cells. Polymer 53, 5675 (2012).

    Article  CAS  Google Scholar 

  30. H. Yao, L. Ye, L. Huo, and J. Hou: Influence of the alkyl substitution position on photovoltaic properties of 2D-BDT-based conjugated polymers. Sci. China Mater. 58, 213 (2015).

    Article  CAS  Google Scholar 

  31. W. Wang, B. Zhao, Z. Cong, Y. Xie, C. Gao, H. Wu, and Y. Cao: Nonfullerene polymer solar cells based on a main-chain twisted low-bandgap acceptor with power conversion efficiency of 13.2%. ACS Energy Lett. 3, 1499 (2018).

    Article  CAS  Google Scholar 

  32. T.H. Le, Q.D. Dao, M.P. Nghiêm, S. Péralta, R. Guillot, Q.N. Pham, A. Fujii, M. Ozaki, F. Goubard, and T-T. Bui: Triphenylamine–thienothiophene organic charge-transport molecular materials: Effect of substitution pattern on their thermal, photoelectrochemical, and photovoltaic properties. Chem.–Asian J. 13, 1302 (2018).

    Article  CAS  Google Scholar 

  33. X. Liu, F. Kong, R. Ghadari, S. Jin, W. Chen, T. Yu, T. Hayat, A. Alsaedi, F. Guo, Z. Tan, J. Chen, and S. Dai: Thiophene-arylamine hole-transporting materials in perovskite solar cells: Substitution position effect. Energy Technol. 5, 1788 (2017).

    Article  CAS  Google Scholar 

  34. R. Singh, G. Pagona, V.G. Gregoriou, N. Tagmatarchis, D. Toliopoulos, Y. Han, Z. Fei, A. Katsouras, A. Avgeropoulos, T.D. Anthopoulos, M. Heeney, P.E. Keivanidis, and C.L. Chochos: The impact of thienothiophene isomeric structures on the optoelectronic properties and photovoltaic performance in quinoxaline based donor-acceptor copolymers. Polym. Chem. 6, 3098 (2015).

    Article  CAS  Google Scholar 

  35. E. Lim, B.J. Jung, and H.K. Shim: Synthesis and characterization of a new light-emitting fluorene-thieno[3,2-b]thiophene-based conjugated copolymer. Macromolecules 36, 4288 (2003).

    Article  CAS  Google Scholar 

  36. P. Gao, J. Tong, P. Guo, J. Li, N. Wang, C. Li, X. Ma, P. Zhang, C. Wang, and Y. Xia: Medium band gap conjugated polymers from thienoacene derivatives and pentacyclic aromatic lactam as promising alternatives of poly(3-hexylthiophene) in photovoltaic application. J. Polym. Sci., Part A: Polym. Chem. 56, 85 (2018).

    Article  CAS  Google Scholar 

  37. D. Zhu, X. Bao, Q. Zhu, C. Gu, M. Qiu, S. Wen, J. Wang, B. Shahida, and R. Yang: Thienothiophene-based copolymers for high-performance solar cells, employing different orientations of the thiazole group as a π bridge. Energy Environ. Sci. 10, 614 (2017).

    Article  CAS  Google Scholar 

  38. M. An, F. Xie, X. Geng, J. Zhang, J. Jiang, Z. Lei, D. He, Z. Xiao, and L. Ding: A high-performance D–A copolymer based on dithieno[3,2-b:2′,3′-d] pyridin-5(4h) -one unit compatible with fullerene and nonfullerene acceptors in solar cells. Adv. Energy Mater. 7, 1602509 (2017).

    Article  CAS  Google Scholar 

  39. N. Blouin, A. Michaud, and M. Leclerc: A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells. Adv. Mater. 19, 2295 (2007).

    Article  CAS  Google Scholar 

  40. H. Zhang, S. Ying, B. Tieke, J. Zhang, and W. Yang: 1,6-Naphthodipyrrolidone -based donor–acceptor polymers with low bandgap. Polymer 60, 215 (2015).

    Article  CAS  Google Scholar 

  41. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox: Gaussian 09, Revision A.01 (Gaussian, Inc., Wallingford, Connecticut, 2009).

    Google Scholar 

  42. Y. Wu, Z. Li, W. Ma, Y. Huang, and J. Hou: PDT-S-T: A new polymer with optimized molecular conformation for controlled aggregation and π–π stacking and its application in efficient photovoltaic devices. Adv. Mater. 25, 3449 (2013).

    Article  CAS  Google Scholar 

  43. J. Yu, Q. An, J. Hai, X. Nie, and W. Tang: Thiadiazole quinoxaline-based copolymers with ∼1.0 eV bandgap for ternary polymer solar cells. Polymer 79, 12 (2015).

    Article  CAS  Google Scholar 

  44. D. Liu, J. Wang, C. Gu, Y. Li, X. Bao, and R. Yang: Stirring up acceptor phase and controlling morphology via choosing appropriate rigid aryl rings as lever arms in symmetry-breaking benzodithiophene for high-performance fullerene and fullerene-free polymer solar cells. Adv. Mater. 30, 1705870 (2018).

    Article  CAS  Google Scholar 

  45. Y. Li, Y. Cao, J. Gao, D. Wang, G. Yu, and A.J. Heeger: Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synth. Met. 99, 243 (1999).

    Article  CAS  Google Scholar 

  46. Q. Sun, H. Wang, C. Yang, and Y. Li: Synthesis and electroluminescence of novel copolymers containing crown ether spacers. J. Mater. Chem. 13, 800 (2003).

    Article  CAS  Google Scholar 

  47. J. Pommerehne, H. Vestweber, W. Guss, R.F. Mahrt, H. Bässler, M. Porsch, and J. Daub: Efficient two layer leads on a polymer blend basis. Adv. Mater. 7, 551 (1995).

    Article  CAS  Google Scholar 

  48. Y. Li: Molecular design of photovoltaic materials for polymer solar cells: Toward suitable electronic energy levels and broad absorption. Acc. Chem. Res. 45, 723 (2012).

    Article  CAS  Google Scholar 

  49. G.G. Malliaras, P.J. Brock, C. Scott, and J.R. Salem: Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Phys. Rev. B 58, R13411 (1998).

    Article  CAS  Google Scholar 

  50. Y. Hu, Z. Li, L. Jiang, Z. Chen, L. Liao, and E. Wang: Correlation of molecular structure and charge transport properties: A case study in naphthalenediimide-based copolymer semiconductors. Adv. Electron. Mater. 4, 1800203 (2018).

    Article  CAS  Google Scholar 

  51. A.K. Kyaw, D.H. Wang, C. Luo, Y. Cao, T.Q. Nguyen, G.C. Bazan, and A.J. Heeger: Effects of solvent additives on morphology, charge generation, transport, and recombination in solution-processed small-molecule solar cells. Adv. Energy Mater. 4, 1301469 (2014).

    Article  CAS  Google Scholar 

  52. T-Y. Chu, Y-H. Lee, and O.K. Song: Effects of interfacial stability between electron transporting layer and cathode on the degradation process of organic light-emitting diodes. Appl. Phys. Lett. 91, 223509 (2007).

    Article  CAS  Google Scholar 

  53. Y. Xia, H. Zhang, J. Li, J. Tong, P. Zhang, and C. Yang: Synthesis of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene-alt-isoindigo conjugated polymer and enhancement of photovoltaic property with diphenyl sulfide additives. J. Polym. Res. 22, 633 (2015).

    Article  CAS  Google Scholar 

  54. H. Li, D. He, P. Mao, Y. Wei, L. Ding, and J. Wang: Additive-free organic solar cells with power conversion efficiency over 10%. Adv. Energy Mater. 7, 1602663 (2017).

    Article  CAS  Google Scholar 

  55. J. Tong, L. An, J. Li, J. Lv, P. Guo, L. Li, P. Zhang, C. Yang, Y. Xia, and C. Wang: Effects of alkyl side chain length of low bandgap naphtho[1,2-c:5,6-c′]bis[1,2,5]thiadiazole based copolymers on the optoelectronic properties of polymer solar cells. J. Polym. Sci., Part A: Polym. Chem. 56, 2059 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are deeply grateful to the National Nature Science Foundation of China (51463011, 61404067), the Natural Science Foundation of Gansu Province (No. 17JR5RA093), the Foundation of a Hundred Youth Talents Training (152022), and Excellent Team of Scientific Research in Lanzhou Jiaotong University (201705, 201703). We also express our thanks to Instrument Analysis Center of Lanzhou Jiaotong University for related testing support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junfeng Tong or Yangjun Xia.

Supplementary Material

43578_2019_34122057_MOESM1_ESM.docx

Supplementary Material:Impact of Linker Positions for Thieno[3,2-b]thiophene in Wide Bandgap benzo[1,2-b:4,5-b′]dithiophene-based Photovoltaic Polymers (approximately 3.71 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Zhang, X., Guo, P. et al. Impact of linker positions for thieno[3,2-b]thiophene in wide band gap benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers. Journal of Materials Research 34, 2057–2066 (2019). https://doi.org/10.1557/jmr.2019.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.81

Navigation