Abstract
A new deep level transient spectroscopy (DLTS) technique is described, called half-width at variable intensity analysis. This method utilizes the width and normalized intensity of a DLTS signal to determine the activation energy and capture cross section of the trap that generated the signal via a variable, kO. This constant relates the carrier emission rates giving rise to the differential capacitance signal associated with a given trap at two different temperatures: the temperature at which the maximum differential capacitance is detected, and an arbitrary temperature at which some nonzero differential capacitance signal is detected. The extracted activation energy of the detected trap center is used along with the position of the peak maximum to extract the capture cross section of the trap center.
Similar content being viewed by others
References
D.V. Lang: Deep level transient spectroscopy: A new method for characterize traps in semiconductors. J. Appl. Phys. 45, 3023 (1974).
J.W. Farmer, C.D. Lamp, and J.M. Meese: Charge transient spectroscopy. Appl. Phys. Lett. 42, 1063 (1982).
N.M. Johnson, D.J. Bartelink, R.B. Gold, and J.F. Gibbons: Constant-capacitance DLTS measurement of defect-density profiles in semiconductors. J. Appl. Phys. 50, 4828 (1979).
C. Hurtes, M. Boulou, A. Mitonneau, and D. Bois: Deep-level spectroscopy in high-resistivity materials. Appl. Phys. Lett. 32, 821 (1978).
J.C. Balland, J.P. Zielinger, M. Tapiero, J.G. Gross, and C. Noguet: Investigation of deep levels in high-resistivity bulk materials by photo-induced current transient spectroscopy: II. Evaluation of various signal processing methods. J. Phys. D: Appl. Phys. 19, 71 (1986).
W. Götz, N.M. Johnson, H. Amano, and I. Akasaki: Deep level defects in N-type GaN. Appl. Phys. Lett. 65, 463 (1994).
D.V. Lang and R.A. Logan: A study of deep levels in GaAs by capacitance spectroscopy. J. Electron. Mater. 5, 1053 (1975).
K. Yamasaki, M. Yoshida, and T. Sugano: Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes. Jpn. J. Appl. Phys. 18, 113 (1979).
P.K. Mclarty, D.E. Ioannou, and J-P. Colinge: Bulk traps in ultrathin SIMOX MOSFET’s by current DLTS. IEEE Electron Device Lett. 9, 545 (1988).
C. Liu, X. Li, H. Geng, E. Rui, J. Yang, and L. Xiao: DLTS studies of bias dependence of defects in silicon NPN bipolar junction transistor irradiated by heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. A 688, 7 (2012).
T. Okino, M. Ochiai, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani: Drain current DLTS of AlGaN-GaN MIS-HEMTs. IEEE Electron Device Lett. 25, 523 (2004).
X. Ma, Z-M. Liu, S. Qu, S-R. Wang, R-T. Hao, and H. Liao: A new method to measure trap characteristics of silicon solar cells. Chin. Phys. Lett. 28, 028801 (2011).
D.V. Lang: Space charge spectroscopy in semiconductors. Top. Appl. Phys. 37, 93 (2005).
J.H. Zhao, J-C. Lee, Z.Q. Fang, T.E. Schlesinger, and A.G. Milnes: Theoretical and experimental determination of deep trap profiles in semiconductors. J. Appl. Phys. 61, 1063 (1987).
W. Shockley: Electrons holes and traps in semiconductors. Proc. IRE 46, 973 (1958).
H. Goto, Y. Adachi, and T. Ikoma: How to determine parameters of deep levels by DLTS single temperature scanning. Jpn. J. Appl. Phys. 18, 1979 (1979).
A. Le Bloa, D.T. Quan, and Z. Guennouni: FTDLTS: A novel isothermal DLTS method using fourier transforms. Meas. Sci. Technol. 4, 325 (1993).
A.R. Peaker, V.P. Markevich, I.D. Hawkins, B. Hamilton, K. Bonde Nielsen, and K. Gościński: Laplace deep level transient spectroscopy: Embodiment and evolution. Phys. B 407, 3026 (2012).
M. Hanine and M. Masmoudi: A reliable guideline to maximize the detection and analysis of deep level defects: Comparison between DLTS analysis techniques. Microelectron. J. 37, 1188 (2006).
J.H. Zhao, T.E. Schlesinger, and A.G. Milnes: Determination of carrier capture cross-sections of traps by deep level transient spectroscopy. J. Appl. Phys. 62, 2865 (1987).
S. Ozder, I. Atilgan, and B. Katircioglu: Temperature dependence of the capture cross section determined by DLTS of a MOS structure. Semicond. Sci. Technol. 10, 1510 (1995).
Y.N. Mohapatra and P.K. Giri: Sensitivity of electrically active defect spectra to processing conditions in MeV heavy ion implanted silicon. Mater. Res. Soc. Symp. Proc. 568, 115–120 (1999).
O. Felisova, N. Yarykin, E. Yakimov, and J. Weber: Hydrogen interaction with defects in electron irradiated silicon. Phys. B 273, 243 (1999).
M. Bruni, D. Bisero, R. Tonini, G. Ottaviani, G. Queirolo, and R. Bottini: Electrical studies on H implanted silicon. Phys. Rev. B 49, 5291 (1994).
P.M. Mooney, L.J. Cheng, M. Suli, J.D. Gerson, and J.W. Corbett: Defect energy levels in boron doped silicon irradiated with 1-MeV electrons. Phys. Rev. B 15, 3836 (1977).
G.L. Miller, D.V. Lang, and L.C. Kimerling: Capacitance transient spectroscopy. Annu. Rev. Mater. Sci. 7, 377 (1977).
A.O. Evwaraye and E. Sun: Electron-irradiation-induced divacancy in lightly doped silicon. J. Appl. Phys. 47, 3776 (1976).
J.W. Rosenberg, M.J. Legodi, Y. Rakita, D. Cahen, and M. Diale: Laplace current deep level transient spectroscopy measurements of defect states in methylammonium lead bromide single crystals. J. Appl. Phys. 122, 145701 (2017).
S. Heo, G. Seo, Y. Lee, D. Lee, M. Seol, J. Lee, J-B. Park, K. Kim, D-J. Yun, Y.S. Kim, J.K. Shin, T.K. Ahn, and M.K. Nazeeruddin: Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy. Energy Environ. Sci. 10, 1128 (2017).
P.G. Whiting: Investigation of defects formed by ion implantation of H2+ into silicon. Master’s Thesis, RIT, Henrietta (2009). Available at: https://scholarworks.rit.edu/theses/2761/ (accessed January 14, 2019).
Acknowledgments
The authors acknowledge Corning, Inc., for funding this research and for the use of their DLTS system. The Semiconductor and Microsystem Fabrication Laboratory at Rochester Institute of Technology is acknowledged for use of their facilities in generating the sample used for analysis in this study.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Whiting, P.G., Jones, K.S., Hirschman, K.D. et al. Peak shape analysis of deep level transient spectra: An alternative to the Arrhenius plot. Journal of Materials Research 34, 1654–1668 (2019). https://doi.org/10.1557/jmr.2019.70
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2019.70