Skip to main content
Log in

Peak shape analysis of deep level transient spectra: An alternative to the Arrhenius plot

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new deep level transient spectroscopy (DLTS) technique is described, called half-width at variable intensity analysis. This method utilizes the width and normalized intensity of a DLTS signal to determine the activation energy and capture cross section of the trap that generated the signal via a variable, kO. This constant relates the carrier emission rates giving rise to the differential capacitance signal associated with a given trap at two different temperatures: the temperature at which the maximum differential capacitance is detected, and an arbitrary temperature at which some nonzero differential capacitance signal is detected. The extracted activation energy of the detected trap center is used along with the position of the peak maximum to extract the capture cross section of the trap center.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Similar content being viewed by others

References

  1. D.V. Lang: Deep level transient spectroscopy: A new method for characterize traps in semiconductors. J. Appl. Phys. 45, 3023 (1974).

    Article  CAS  Google Scholar 

  2. J.W. Farmer, C.D. Lamp, and J.M. Meese: Charge transient spectroscopy. Appl. Phys. Lett. 42, 1063 (1982).

    Article  Google Scholar 

  3. N.M. Johnson, D.J. Bartelink, R.B. Gold, and J.F. Gibbons: Constant-capacitance DLTS measurement of defect-density profiles in semiconductors. J. Appl. Phys. 50, 4828 (1979).

    Article  CAS  Google Scholar 

  4. C. Hurtes, M. Boulou, A. Mitonneau, and D. Bois: Deep-level spectroscopy in high-resistivity materials. Appl. Phys. Lett. 32, 821 (1978).

    Article  CAS  Google Scholar 

  5. J.C. Balland, J.P. Zielinger, M. Tapiero, J.G. Gross, and C. Noguet: Investigation of deep levels in high-resistivity bulk materials by photo-induced current transient spectroscopy: II. Evaluation of various signal processing methods. J. Phys. D: Appl. Phys. 19, 71 (1986).

    Article  CAS  Google Scholar 

  6. W. Götz, N.M. Johnson, H. Amano, and I. Akasaki: Deep level defects in N-type GaN. Appl. Phys. Lett. 65, 463 (1994).

    Article  Google Scholar 

  7. D.V. Lang and R.A. Logan: A study of deep levels in GaAs by capacitance spectroscopy. J. Electron. Mater. 5, 1053 (1975).

    Article  Google Scholar 

  8. K. Yamasaki, M. Yoshida, and T. Sugano: Deep level transient spectroscopy of bulk traps and interface states in Si MOS diodes. Jpn. J. Appl. Phys. 18, 113 (1979).

    Article  CAS  Google Scholar 

  9. P.K. Mclarty, D.E. Ioannou, and J-P. Colinge: Bulk traps in ultrathin SIMOX MOSFET’s by current DLTS. IEEE Electron Device Lett. 9, 545 (1988).

    Article  Google Scholar 

  10. C. Liu, X. Li, H. Geng, E. Rui, J. Yang, and L. Xiao: DLTS studies of bias dependence of defects in silicon NPN bipolar junction transistor irradiated by heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. A 688, 7 (2012).

    Article  CAS  Google Scholar 

  11. T. Okino, M. Ochiai, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani: Drain current DLTS of AlGaN-GaN MIS-HEMTs. IEEE Electron Device Lett. 25, 523 (2004).

    Article  CAS  Google Scholar 

  12. X. Ma, Z-M. Liu, S. Qu, S-R. Wang, R-T. Hao, and H. Liao: A new method to measure trap characteristics of silicon solar cells. Chin. Phys. Lett. 28, 028801 (2011).

    Article  Google Scholar 

  13. D.V. Lang: Space charge spectroscopy in semiconductors. Top. Appl. Phys. 37, 93 (2005).

    Article  Google Scholar 

  14. J.H. Zhao, J-C. Lee, Z.Q. Fang, T.E. Schlesinger, and A.G. Milnes: Theoretical and experimental determination of deep trap profiles in semiconductors. J. Appl. Phys. 61, 1063 (1987).

    Article  CAS  Google Scholar 

  15. W. Shockley: Electrons holes and traps in semiconductors. Proc. IRE 46, 973 (1958).

    Article  Google Scholar 

  16. H. Goto, Y. Adachi, and T. Ikoma: How to determine parameters of deep levels by DLTS single temperature scanning. Jpn. J. Appl. Phys. 18, 1979 (1979).

    Article  CAS  Google Scholar 

  17. A. Le Bloa, D.T. Quan, and Z. Guennouni: FTDLTS: A novel isothermal DLTS method using fourier transforms. Meas. Sci. Technol. 4, 325 (1993).

    Article  Google Scholar 

  18. A.R. Peaker, V.P. Markevich, I.D. Hawkins, B. Hamilton, K. Bonde Nielsen, and K. Gościński: Laplace deep level transient spectroscopy: Embodiment and evolution. Phys. B 407, 3026 (2012).

    Article  CAS  Google Scholar 

  19. M. Hanine and M. Masmoudi: A reliable guideline to maximize the detection and analysis of deep level defects: Comparison between DLTS analysis techniques. Microelectron. J. 37, 1188 (2006).

    Article  Google Scholar 

  20. J.H. Zhao, T.E. Schlesinger, and A.G. Milnes: Determination of carrier capture cross-sections of traps by deep level transient spectroscopy. J. Appl. Phys. 62, 2865 (1987).

    Article  CAS  Google Scholar 

  21. S. Ozder, I. Atilgan, and B. Katircioglu: Temperature dependence of the capture cross section determined by DLTS of a MOS structure. Semicond. Sci. Technol. 10, 1510 (1995).

    Article  Google Scholar 

  22. Y.N. Mohapatra and P.K. Giri: Sensitivity of electrically active defect spectra to processing conditions in MeV heavy ion implanted silicon. Mater. Res. Soc. Symp. Proc. 568, 115–120 (1999).

    Article  CAS  Google Scholar 

  23. O. Felisova, N. Yarykin, E. Yakimov, and J. Weber: Hydrogen interaction with defects in electron irradiated silicon. Phys. B 273, 243 (1999).

    Google Scholar 

  24. M. Bruni, D. Bisero, R. Tonini, G. Ottaviani, G. Queirolo, and R. Bottini: Electrical studies on H implanted silicon. Phys. Rev. B 49, 5291 (1994).

    Article  CAS  Google Scholar 

  25. P.M. Mooney, L.J. Cheng, M. Suli, J.D. Gerson, and J.W. Corbett: Defect energy levels in boron doped silicon irradiated with 1-MeV electrons. Phys. Rev. B 15, 3836 (1977).

    Article  CAS  Google Scholar 

  26. G.L. Miller, D.V. Lang, and L.C. Kimerling: Capacitance transient spectroscopy. Annu. Rev. Mater. Sci. 7, 377 (1977).

    Article  CAS  Google Scholar 

  27. A.O. Evwaraye and E. Sun: Electron-irradiation-induced divacancy in lightly doped silicon. J. Appl. Phys. 47, 3776 (1976).

    Article  CAS  Google Scholar 

  28. J.W. Rosenberg, M.J. Legodi, Y. Rakita, D. Cahen, and M. Diale: Laplace current deep level transient spectroscopy measurements of defect states in methylammonium lead bromide single crystals. J. Appl. Phys. 122, 145701 (2017).

    Article  Google Scholar 

  29. S. Heo, G. Seo, Y. Lee, D. Lee, M. Seol, J. Lee, J-B. Park, K. Kim, D-J. Yun, Y.S. Kim, J.K. Shin, T.K. Ahn, and M.K. Nazeeruddin: Deep level trapped defect analysis in CH3NH3PbI3 perovskite solar cells by deep level transient spectroscopy. Energy Environ. Sci. 10, 1128 (2017).

    Article  CAS  Google Scholar 

  30. P.G. Whiting: Investigation of defects formed by ion implantation of H2+ into silicon. Master’s Thesis, RIT, Henrietta (2009). Available at: https://scholarworks.rit.edu/theses/2761/ (accessed January 14, 2019).

Download references

Acknowledgments

The authors acknowledge Corning, Inc., for funding this research and for the use of their DLTS system. The Semiconductor and Microsystem Fabrication Laboratory at Rochester Institute of Technology is acknowledged for use of their facilities in generating the sample used for analysis in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick G. Whiting.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whiting, P.G., Jones, K.S., Hirschman, K.D. et al. Peak shape analysis of deep level transient spectra: An alternative to the Arrhenius plot. Journal of Materials Research 34, 1654–1668 (2019). https://doi.org/10.1557/jmr.2019.70

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.70

Navigation