Skip to main content
Log in

Bulk titanium–graphene nanocomposites fabricated by selective laser melting

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this report, bulk graphene–reinforced titanium (Ti–Gr) nanocomposite with millimeter thickness was fabricated by selective laser melting process. Demonstrated by the characterizations of scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectra, graphene nanoplatelets were successfully embedded into the titanium matrix with a uniform dispersion due to a fast heating–cooling process. High-resolution transmission electron microscopy was used to investigate the interface between titanium and graphene, where a certain amount of carbide was formed attribute to the chemical reaction between them during multilayer laser melting. A high density of dislocations was observed surrounding the graphene nanoplatelets in titanium matrix. The strength and elastic modulus of the nanocomposites were significantly improved, which has been demonstrated by nano-indentation tests. The hardness of the bulk Ti–Gr nanocomposites was approximately 1.27 times higher than pristine Ti counterpart. The strengthening mechanisms were discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:

Similar content being viewed by others

References

  1. A. Mortensen and J. Llorca: Metal matrix composites. Annu. Rev. Mater. Res. 40, 243 (2010).

    Article  CAS  Google Scholar 

  2. S.R. Seagle: Titanium and titanium alloys. In Kirk-Othmer Encyclopedia of Chemical Technology, D. Knittel, ed. (John Wiley & Sons, Inc., New York, 2000); pp. 98.

    Google Scholar 

  3. K. Kondoh, T. Threrujirapapong, H. Imai, J. Umeda, and B. Fugetsu: Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes. Compos. Sci. Technol. 69, 1077 (2009).

    Article  CAS  Google Scholar 

  4. K.S. Munir, P. Kingshott, and C. Wen: Carbon nanotube reinforced titanium metal matrix composites prepared by powder metallurgy—A review. Crit. Rev. Solid State Mater. Sci. 40, 38 (2015).

    Article  CAS  Google Scholar 

  5. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).

    Article  CAS  Google Scholar 

  6. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  7. C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  8. C. Lee, X. Wei, Q. Li, R. Carpick, J.W. Kysar, and J. Hone: Elastic and frictional properties of graphene. Phys. Status Solidi B 246, 2562 (2009).

    Article  CAS  Google Scholar 

  9. K. Markandan, J.K. Chin, and M.T.T. Tan: Recent progress in graphene based ceramic composites: A review. J. Mater. Res. 32, 84 (2016).

    Article  Google Scholar 

  10. J.R. Potts, D.R. Dreyer, C.W. Bielawski, and R.S. Ruoff: Graphene-based polymer nanocomposites. Polymer 52, 5 (2011).

    Article  CAS  Google Scholar 

  11. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, and S. Seal: Graphene based materials: Past, present and future. Prog. Mater. Sci. 56, 1178 (2011).

    Article  CAS  Google Scholar 

  12. M. Bastwros, G-Y. Kim, C. Zhu, K. Zhang, S. Wang, X. Tang, and X. Wang: Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Composites, Part B 60, 111 (2014).

    Article  CAS  Google Scholar 

  13. R. Pérez-Bustamante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, and R. Martínez-Sánchez: Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 615 (Suppl. 1), S578 (2014).

    Article  Google Scholar 

  14. J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, and S.L. Dai: Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater. Sci. Eng., A 626, 400 (2015).

    Article  CAS  Google Scholar 

  15. T.S. Koltsova, L.I. Nasibulina, I.V. Anoshkin, V.V. Mishin, E.I. Kauppinen, O.V. Tolochko, and A.G. Nasibulin: New hybrid copper composite materials based on carbon nanotubes. J. Mater. Sci. Eng. B 2, 240 (2012).

    CAS  Google Scholar 

  16. J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong, and S. Jeon: Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 25, 6724 (2013).

    Article  CAS  Google Scholar 

  17. W.J. Kim, T.J. Lee, and S.H. Han: Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties. Carbon 69, 55 (2014).

    Article  CAS  Google Scholar 

  18. Y. Tang, X. Yang, R. Wang, and M. Li: Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Mater. Sci. Eng., A 599, 247 (2014).

    Article  CAS  Google Scholar 

  19. D. Kuang, L. Xu, L. Liu, W. Hu, and Y. Wu: Graphene nickle composite. Appl. Surf. Sci. 273, 484 (2013).

    Article  CAS  Google Scholar 

  20. R. Zhaodi, M. Nan, S. Khurram, X. Yang, Q. Shaoxing, Y. Bin, and J.K. Luo: Mechanical properties of nickel–graphene composites synthesized by electrochemical deposition. Nanotechnology 26, 065706 (2015).

    Article  Google Scholar 

  21. Z. Hu, G. Tong, D. Lin, Q. Nian, J. Shao, Y. Hu, M. Saei, S. Jin, and G.J. Cheng: Laser sintered graphene nickel nanocomposites. J. Mater. Process. Technol. 231, 143 (2016).

    Article  CAS  Google Scholar 

  22. L-Y. Chen, H. Konishi, A. Fehrenbacher, C. Ma, J-Q. Xu, H. Choi, H-F. Xu, F.E. Pfefferkorn, and X-C. Li: Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr. Mater. 67, 29 (2012).

    Article  CAS  Google Scholar 

  23. M. Rashad, F. Pan, A. Tang, Y. Lu, M. Asif, S. Hussain, J. She, J. Gou, and J. Mao: Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium–titanium alloys. J. Magnesium Alloys 1, 242 (2013).

    Article  CAS  Google Scholar 

  24. M. Rashad, F. Pan, M. Asif, and A. Tang: Powder metallurgy of Mg–1% Al–1% Sn alloy reinforced with low content of graphene nanoplatelets (GNPs). J. Ind. Eng. Chem. 20 (6) 4250–4255 (2014).

    Article  CAS  Google Scholar 

  25. M. Rashad, F. Pan, A. Tang, M. Asif, and M. Aamir: Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium. J. Alloys Compd. 603, 111 (2014).

    Article  CAS  Google Scholar 

  26. M. Rashad, F. Pan, H. Hu, M. Asif, S. Hussain, and J. She: Enhanced tensile properties of magnesium composites reinforced with graphene nanoplatelets. Mater. Sci. Eng., A 630, 36 (2015).

    Article  CAS  Google Scholar 

  27. M. Rashad, F. Pan, D. Lin, and M. Asif: High temperature mechanical behavior of AZ61 magnesium alloy reinforced with graphene nanoplatelets. Mater. Des. 89, 1242 (2016).

    Article  CAS  Google Scholar 

  28. D. Lin, C. Richard Liu, and G.J. Cheng: Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement. Acta Mater. 80, 183 (2014).

    Article  CAS  Google Scholar 

  29. K. Jagannadham: Thermal conductivity changes in titanium–graphene composite upon annealing. Metall. Mater. Trans. A 47, 907 (2015).

    Article  Google Scholar 

  30. W-Z. Yang, W-M. Huang, Z-F. Wang, F-J. Shang, W. Huang, and B-Y. Zhang: Thermal and mechanical properties of graphene–titanium composites synthesized by microwave sintering. Acta Metall. Sin. 29, 707 (2016).

    Article  CAS  Google Scholar 

  31. Z. Hu, G. Tong, Q. Nian, R. Xu, M. Saei, F. Chen, C. Chen, M. Zhang, H. Guo, and J. Xu: Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites. Composites, Part B 93, 352 (2016).

    Article  CAS  Google Scholar 

  32. L.P. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, and G. Sundararajan: A new electrochemical approach for the synthesis of copper–graphene nanocomposite foils with high hardness. Sci. Rep. 4, 4049 (2014).

    Article  Google Scholar 

  33. A.C. Ferrari: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).

    Article  CAS  Google Scholar 

  34. B.H. Lohse, A. Calka, and D. Wexler: Raman spectroscopy sheds new light on TiC formation during the controlled milling of titanium and carbon. J. Alloys Compd. 434–435, 405 (2007).

    Article  Google Scholar 

  35. N.S. Karthiselva and S.R. Bakshi: Carbon nanotube and in situ titanium carbide reinforced titanium diboride matrix composites synthesized by reactive spark plasma sintering. Mater. Sci. Eng., A 663, 38 (2016).

    Article  CAS  Google Scholar 

  36. Z. Li, G. Fan, Z. Tan, Q. Guo, D. Xiong, Y. Su, Z. Li, and D. Zhang: Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites. Nanotechnology 25, 325601 (2014).

    Article  Google Scholar 

  37. M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z-Z. Yu, and N. Koratkar: Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3, 3884 (2009).

    Article  CAS  Google Scholar 

  38. X. Zhao, Q. Zhang, D. Chen, and P. Lu: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43, 2357 (2010).

    Article  CAS  Google Scholar 

  39. H. Kim and C.W. Macosko: Processing-property relationships of polycarbonate/graphene composites. Polymer 50, 3797 (2009).

    Article  CAS  Google Scholar 

  40. Z. Hu, F. Chen, J. Xu, Z. Ma, H. Guo, C. Chen, Q. Nian, X. Wang, and M. Zhang: Fabricating graphene–titanium composites by laser sintering PVA bonding graphene titanium coating: Microstructure and mechanical properties. Composites, Part B 134 (Supp. C), 133 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Testing and Analysis Center of Soochow University for the XPS results. The authors also acknowledge the support from Arizona State University and National Science Foundation (CMMI-1826439).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Nian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Wang, D., Chen, C. et al. Bulk titanium–graphene nanocomposites fabricated by selective laser melting. Journal of Materials Research 34, 1744–1753 (2019). https://doi.org/10.1557/jmr.2019.65

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.65

Navigation