Skip to main content
Log in

Fabrication of polyelectrolyte microspheres using porous manganese carbonate as sacrificial template for drug delivery application

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper describes the fabrication of polyelectrolyte microspheres using porous manganese carbonate as a sacrificial template for entrapped photosensitizer (PS) drugs for photodynamic therapy application. These particles were used as templates for polyelectrolyte layer-by-layer assembly (Lbl) of two oppositely charged polyelectrolytes: poly(styrene sulfonate) and poly(allylamine hydrochloride). When the polyelectrolyte multilayer shell was built around the MnCO3 core by the Lbl protocol and the core was extracted with acid solution and EDTA, the resultant assembly consisted of hollow polyelectrolyte spheres. Chloroaluminum phthalocyanine was chosen as the model drug to load into the hollow spheres. All the spectroscopic results presented showed excellent photophysical parameters of the studied drug. The fabrication of polyelectrolyte hollow spheres can be used as an optimal medium for a variety of bioactive materials, which can also be encapsulated by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Similar content being viewed by others

References

  1. H. Abrahmse and M.R. Hamblin: New photosensitizers for photodynamic therapy. Biochem. J. 473, 347 (2016).

    Article  CAS  Google Scholar 

  2. P. Avci, S.S. Erdem, and M.R. Hamblin: Photodynamic therapy: One step ahead with self-assembled nanoparticles. J. Biomed. Nanotechnol. 10, 1937 (2014).

    Article  CAS  Google Scholar 

  3. G.M.F. Calixto, J. Bernegossi, L.M. Freitas, C.R. Fontana, and M. Chorilli: Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: A review. Molecules 21, 342 (2016).

    Article  CAS  Google Scholar 

  4. P. Mroz, J.T. Hashmi, Y. Huang, Y. Lange, and M.R. Hamblin: Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev. Clin. Immunol. 7, 75 (2011).

    Article  CAS  Google Scholar 

  5. M.E. Lim, Y.L. Lee, Y. Zhang, and J.J.H. Chu: Photodynamic inactivation of viruses using upconversion nanoparticles. Biomaterials 33, 1912 (2012).

    Article  CAS  Google Scholar 

  6. K.R. Py-Daniel, J.S. Namban, L.R. Andrade, P.E.N. Souza, L.G. Paterno, R.B. Azevedo, and M.A.G. Soler: Highly efficient photodynamic therapy colloidal system based on chloroaluminum phthalocyanine/pluronic micelles. Eur. J. Pharm. Biopharm. 103, 23 (2016).

    Article  CAS  Google Scholar 

  7. E.P.O. Silva, L. Franchi, and A.C. Tedesco: Chloro-aluminium phthalocyanine loaded in ultradeformable liposome for photobiology studies on human glioblastoma. RSC Adv. 6, 79631 (2016).

    Article  CAS  Google Scholar 

  8. D. Hinger, S. Gräfe, F. Navarro, B. Spingler, D. Pandiarajan, H. Walt, A.C. Couffin, and C. Maake: Lipid nanoemulsions and liposomes improve photodynamic treatment efficacy and tolerance in CAL-33 tumor bearing nude mice. J. Nanobiotechnol. 14, 71 (2016).

    Article  CAS  Google Scholar 

  9. A. Castilho-Fernandes, T.G. Lopes, F.L. Primo, R.M. Pinto, and A.C. Tedesco: Photodynamic process induced by chloro-aluminum phthalocyanine nanoemulsion in glioblastoma. Photodiagn. Photodyn. Ther. 19, 221 (2017).

    Article  CAS  Google Scholar 

  10. T.D. Souza, F.I. Ziembowicz, D.F. Müller, S.C. Lauermann, C.L. Kloster, R.V.C. Santos, Q.L.S. Lopes, A.F. Ourique, G. Machado, and M.A. Villetti: Evaluation of photodynamic activity, photostability and in vitro drug release of zinc phthalocyanine-loaded nanocapsules. Eur. J. Pharm. Sci. 83, 88 (2016).

    Article  CAS  Google Scholar 

  11. A.R. Simioni, F.L. Primo, and A.C. Tedesco: Silicon(IV) phthalocyanine-loaded-nanoparticles for application in photodynamic process. J. Laser Appl. 24, 012004–1 (2012).

    Article  CAS  Google Scholar 

  12. J.A. Carvalho, A.S. Abreu, V.T.P. Ferreira, E.P. Gonçalves, A.C. Tedesco, J.G. Pinto, J. Ferreira-Strixino, M. Beltrame-Junior, and A.R. Simioni: Preparation of gelatin nanoparticles by two step desolvation method for application in photodynamic therapy. J. Biomater. Sci., Polym. Ed. 29, 1287 (2018).

    Article  CAS  Google Scholar 

  13. A.C. Pinheiro, A.I. Bourbona, M.A. Cerqueira, E. Maricato, C. Nunes, M.A. Coimbra, and A.A. Vicente: Chitosan/fucoidan multilayer nanocapsules as a vehicle for controlled release of bioactive compounds. Carbohydr. Polym. 115, 1 (2015).

    Article  CAS  Google Scholar 

  14. F. Cuomo, F. Lopez, M.G. Miguel, and B.R. Lindman: Vesicle-templated layer-by-layer assembly for the production of nanocapsules. Langmuir 26, 10555 (2010).

    Article  CAS  Google Scholar 

  15. A.P.R. Johnston, C. Cortez, A.S. Angelatos, and F. Caruso: Layer-by-layer engineered capsules and their applications. Curr. Opin. Colloid Interface Sci 11, 2013 (2006).

    Article  CAS  Google Scholar 

  16. P. Liu and L. Xiaorui: Layer-by-layer engineered superparamagnetic polyelectrolyte hybrid hollow microspheres with high magnetic content as drug delivery system. Int. J. Polym. Mater. 64, 857 (2015).

    Article  CAS  Google Scholar 

  17. G. Sukhorukov, D. Volodkin, A.M. Günther, and H. Moehwald: Porous calcium carbonate microparticles as templates for encapsulation of bioactive compounds. J. Mater. Chem. 24, 2073 (2004).

    Article  Google Scholar 

  18. A.R. Simioni, P.C.C. de Jesus, and A.C. Tedesco: Layer-by-layer hollow photosensitizer microcapsule design via a manganese carbonate hard template for photodynamic therapy in cells. Photodiagn. Photodyn. Ther. 22, 169 (2018).

    Article  CAS  Google Scholar 

  19. J. Jordens, N. Coker, B. Gielen, T.V. Gerven, and L. Braeken: Ultrasound precipitation of manganese carbonate: The effect of power and frequency on particle properties. Ultrason. Sonochem. 26, 64 (2015).

    Article  CAS  Google Scholar 

  20. D.V. Volodkin, A.I. Petrov, M. Prevot, and G.B. Sukhorukov: Matrix polyelectrolyte microcapsules: New system for macromolecule encapsulation. Langmuir 20, 3398 (2004).

    Article  CAS  Google Scholar 

  21. M. Kim, M.G. Choi, H.W. Ra, S.B. Park, Y.J. Kim, and K. Lee: Encapsulation of multiple microalgal cells via a combination of biomimetic mineralization and LbL coating. Materials 11, 296 (2018).

    Article  CAS  Google Scholar 

  22. D. Wu, F. Xu, B. Sun, R. Fu, R. He, and K. Matyjaszewski: Design and preparation of porous polymers. Chem. Rev. 112, 3959 (2012).

    Article  CAS  Google Scholar 

  23. J. Irigoyen, S.E. Moya, J.J. Iturri, I. Llarena, O. Azzaroni, and E. Donath: Specific zeta-potential response of layer-by-layer coated colloidal particles triggered by polyelectrolyte ion interactions. Langmuir 25, 3374 (2009).

    Article  CAS  Google Scholar 

  24. R.A. Ghostine, M.Z. Markarian, and J.B. Schlenof: Asymmetric growth in polyelectrolyte multilayers. J. Am. Chem. Soc. 135, 7636 (2013).

    Article  CAS  Google Scholar 

  25. E.S. Bronze-Uhle, B.C. Costa, V.F. Ximenes, and P.N. Lisboa-Filho: Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnol., Sci. Appl. 10, 11 (2017).

    Article  CAS  Google Scholar 

  26. M.N. Sibata, A.C. Tedesco, and J.M. Marchetti: Photophysical and photophysical studies of Zinc(II) phthalocyanine in long time circulation micelles for photodynamic therapy use. Eur. J. Pharm. Sci. 23, 131 (2004).

    Article  CAS  Google Scholar 

  27. A.R.A. Silva, A.R. Simioni, and A.C. Tedesco: Photophysical and complexation studies of chloro-aluminum phthalocyanine with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. J. Nanosci. Nanotechnol. 11, 4046 (2011).

    Article  CAS  Google Scholar 

  28. J.E. Hill, M.K. Linder, K.S. Davies, G.A. Sawada, J. Morgan, T.Y. Ohulchanskyy, and M.R. Detty: Selenorhodamine photosensitizers for photodynamic therapy of P-glycoprotein-expressing cancer cells. J. Med. Chem. 57, 8622 (2014).

    Article  CAS  Google Scholar 

  29. A. Stradomska and J. Knoester: Shape of the Q band in the absorption spectra of porphyrin nanotubes: Vibronic coupling or exciton effects? J. Phys. Chem. 133, 094701–1 (2010).

    Article  CAS  Google Scholar 

  30. K. Sakamoto and E. Ohno-Okumura: Syntheses and functional properties of phthalocyanines. Materials 2, 1127 (2009).

    Article  CAS  Google Scholar 

  31. S.A. Gerhardt, J.W. Lewis, D.S. Kliger, J.Z. Zhang, and U. Simonis: Effect of micelles on oxygen-quenching processes of triplet-state para-substituted tetraphenylporphyrin photosensitizers. J. Phys. Chem. A 107, 2763 (2003).

    Article  CAS  Google Scholar 

  32. I. Gjuroski, J. Furrer, and M. Vermathen: How does the encapsulation of porphyrinic photosensitizers into polymer matrices affect their self-association and dynamic properties? ChemPhysChem 19, 1089 (2018).

    Article  CAS  Google Scholar 

  33. R. Tang, M.L. Habimana-Griffin, D.D. Lane, C. Egbulefu, and S. Achilefu: Nanophotosensitive drugs for light-based cancer therapy: What does the future hold? Nanomedicine 12, 1101 (2017).

    Article  CAS  Google Scholar 

  34. A. Eisfeld and J.B. Briggs: The J- and H-bands of organic dye aggregates. Chem. Phys. 34, 376 (2006).

    Article  CAS  Google Scholar 

  35. Y. Liu, K. Ma, T. Jiao, R. Xing, G. Shen, and X. Yan: Water-insoluble photosensitizer nanocolloids stabilized by supramolecular interfacial assembly towards photodynamic therapy. Sci. Rep. 7, 42978 (2017).

    Article  CAS  Google Scholar 

  36. X. Huang and C.S. Brazel: On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Controlled Release 73, 121 (2001).

    Article  CAS  Google Scholar 

  37. P. Gao, X. Nie, M. Zou, Y. Shi, and G. Cheng: Recent advances in materials for extended release antibiotic delivery system. J. Antibiot. 64, 625 (2011).

    Article  CAS  Google Scholar 

  38. J.H. Lee and Y. Yeo: Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 125, 75 (2015).

    Article  CAS  Google Scholar 

  39. C.S. de Paula, A.C. Tedesco, F.L. Primo, J.M. Vilela, M.S. Andrade, and V.C. Mosqueira: Chloroaluminium phthalocyanine polymeric nanoparticles as photosensitisers: Photophysical and physicochemical characterisation, release and phototoxicity in vitro. Eur. J. Pharm. Sci. 49, 371 (2013).

    Article  CAS  Google Scholar 

  40. S.I. Jethara, M.R. Patel, and A.D. Patel: Sustained release drug delivery systems: A patent overview. Aperito J. Drug Design. Pharmacol. 1, 104 (2014).

    Google Scholar 

  41. K.P.S. Kumar, D. Bhowmik, S. Srivastava, S. Paswan, and A.S. Dutta: Sustained release drug delivery system potential. Pharma Innovation 1, 48 (2012).

    CAS  Google Scholar 

  42. A. Schwiertz, S. Wiehe, B. Gräfe, and M.E. Gitter: Calcium phosphate nanoparticles as efficient carriers for photodynamic therapy against cells and bactéria. Biomaterials 30, 3324 (2009).

    Article  CAS  Google Scholar 

  43. M.Q. Mesquita, C.J. Dias, S. Gamelas, M. Fardilha, M.G.P.M.S. Neves, and M.A.F. Faustino: An insight on the role of photosensitizer nanocarriers for photodynamic therapy. An. Acad. Bras. Cienc. 90, 1101 (2018).

    Article  CAS  Google Scholar 

  44. A.S. Soboleva, D.A. Jans, and A.A. Rosenkranz: Targeted intracellular delivery of photosensitizers. Prog. Biophys. Mol. Biol. 73, 51 (2000).

    Article  Google Scholar 

  45. D. Fakhar ud, W. Aman, I. Ullah, O.S. Qureshi, O. Mustapha, S. Shafique, and A. Zeb: Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomed. 12, 7291 (2017).

    Article  Google Scholar 

  46. E.P.O. Silva, E.D. Santos, C.S. Gonçalves, M.A.G. Cardoso, C.P. Soares, and M. Beltrame-Junior: Zinc phthalocyanine-conjugated with bovine serum albumin mediated photodynamic therapy of human larynx carcinoma. Laser Phys. 26, 105601 (2016).

    Article  CAS  Google Scholar 

  47. D.K. Deda, A.F. Uchoa, E. Caritá, M.S. Baptista, H.E. Toma, and K. Araki: A new micro/nanoencapsulated porphyrin formulation for PDT treatment. Int. J. Pharm 376, 76 (2009).

    Article  CAS  Google Scholar 

  48. D.K. Deda and K. Araki: Nanotechnology, light and chemical action: An effective combination to kill cancer cells. J. Braz. Chem. Soc. 26, 2448 (2015).

    CAS  Google Scholar 

  49. B. Zhao, J.J. Yin, P.J. Bilski, C.F. Chignell, J.E. Roberts, and Y.Y. He: Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicol. Appl. Pharmacol. 241, 163 (2009).

    Article  CAS  Google Scholar 

  50. H. Zhu, E.W. Stein, Z. Lu, Y.M. Lvov, and M.J. McShane: Synthesis of size-controlled monodisperse manganese carbonate microparticles as templates for uniform polyelectrolyte microcapsule formation. Chem. Mater. 17, 2323 (2005).

    Article  CAS  Google Scholar 

  51. M.P. Siqueira-Moura, F.L. Primo, A.P.F. Peti, and A.C. Tedesco: Validated spectrophotometric and spectrofluorimetric methods for determination of chloroaluminum phthalocyanine in nanocarriers. Pharmazie 65, 1 (2010).

    Google Scholar 

  52. C.N. Lunardi, J.C.G. Rotta, and A.C. Tedesco: Zinc tetranitrophthalocyanine: Isomer separation and photophysical-photobiological evaluation in J774A tumor cells. J. Porphyrins Phthalocyanines 7, 493 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the Brazilian Agency CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) with the project number 800038/2014-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreza Ribeiro Simioni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abreu, A.d.S., Carvalho, J.A., Tedesco, A.C. et al. Fabrication of polyelectrolyte microspheres using porous manganese carbonate as sacrificial template for drug delivery application. Journal of Materials Research 34, 1353–1362 (2019). https://doi.org/10.1557/jmr.2019.47

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.47

Navigation