Abstract
A detailed electron backscatter diffraction (EBSD) characterization was utilized to investigate abnormal grain growth behavior of nanocrystalline (NC) Au films constrained by a flexible substrate under cyclic loading. Abnormally grown grains (AGGs) in front of about 15 fatigue cracks were picked out to investigate the grain reorientation behavior during abnormal grain growth in the fatigue crack tip in the cyclically deformed thin films. It shows that the AGGs exhibited 〈001〉 orientation along the loading direction, whereas grains grown far away from fatigue cracks had no significant texture change. The cyclic cumulative shear strain was found to play a key role in grain reorientation. A lattice rotation model was proposed to elucidate the grain reorientation mechanism during abnormal grain growth. Such grain reorientation behavior of NC metals was found to provide an intrinsic resistance of the NC metals to fatigue damage.
Similar content being viewed by others
References
J. Schiotz and K.W. Jacobsen: A maximum in the strength of nanocrystalline copper. Science 301, 1357 (2003).
H. Mughrabi and H.W. Höppel: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32, 1413 (2010).
L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M. Chen, and X. Han: Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 5, 4402 (2014).
D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).
A.M. Minor, E.T. Lilleodden, E.A. Stach, and J.W. Morris: Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19, 176 (2004).
R.A. Meirom, D.H. Alsem, A.L. Romasco, T. Clark, R.G. Polcawich, J.S. Pulskamp, M. Dubey, R.O. Ritchie, and C.L. Muhlstein: Fatigue-induced grain coarsening in nanocrystalline platinum films. Acta Mater. 59, 1141 (2011).
M.W. Kapp, T. Kremmer, C. Motz, B. Yang, and R. Pippan: Structural instabilities during cyclic loading of ultrafine-grained copper studied with micro bending experiments. Acta Mater. 125, 351 (2017).
K. Zhang, J.R. Weertman, and J.A. Eastman: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87, 061921 (2005).
H.W. Höppel, Z.M. Zhou, H. Mughrabi, and R.Z. Valiev: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82, 1781 (2002).
O. Glushko and M.J. Cordill: The driving force governing room temperature grain coarsening in thin gold films. Scr. Mater. 130, 42 (2017).
X-M. Luo, X. Li, and G-P. Zhang: Forming incoherent twin boundaries: A new way for nanograin growth under cyclic loading. Mater. Res. Lett. 5, 95 (2017).
X.M. Luo, X.F. Zhu, and G.P. Zhang: Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat. Commun. 5, 3021 (2014).
B.L. Boyce and H.A. Padilla: Anomalous fatigue behavior and fatigue-induced grain growth in nanocrystalline nickel alloys. Metall. Mater. Trans. A 42, 1793 (2011).
Z.W. Shan: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).
W.A. Soer, J.T.M. De Hosson, A.M. Minor, J.W. Morris, Jr., and E.A. Stach: Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films. Acta Mater. 52, 5783 (2004).
G.J. Fan, L.F. Fu, H. Choo, P.K. Liaw, and N.D. Browning: Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys. Acta Mater. 54, 4781 (2006).
H.A. Padilla and B.L. Boyce: A review of fatigue behavior in nanocrystalline metals. Exp. Mech. 50, 5 (2009).
S. Cheng, Y.H. Zhao, Y.M. Wang, Y. Li, X.L. Wang, P.K. Liaw, and E.J. Lavernia: Structure modulation driven by cyclic deformation in nanocrystalline NiFe. Phys. Rev. Lett. 104, 255501 (2010).
G.J. Fan, L.F. Fu, D.C. Qiao, H. Choo, P.K. Liaw, and N.D. Browning: Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation. Scr. Mater. 54, 2137 (2006).
T.A. Furnish, B.L. Boyce, J.A. Sharon, C.J. O’Brien, B.G. Clark, C.L. Arrington, and J.R. Pillars: Fatigue stress concentration and notch sensitivity in nanocrystalline metals. J. Mater. Res. 31, 740 (2016).
J.Z. Long, Q.S. Pan, N.R. Tao, and L. Lu: Abnormal grain coarsening in cyclically deformed gradient nanograined Cu. Scr. Mater. 145, 99 (2018).
T. Kondo, X. Bi, H. Hirakata, and K. Minoshima: Mechanics of fatigue crack initiation in submicron-thick freestanding copper films. Int. J. Fatigue 82, 12 (2016).
S.X. Zheng, X.M. Luo, D. Wang, and G.P. Zhang: A novel evaluation strategy for fatigue reliability of flexible nanoscale films. Mater. Res. Express 5, 035012 (2018).
X.M. Luo and G.P. Zhang: Grain boundary instability dependent fatigue damage behavior in nanoscale gold films on flexible substrates. Mater. Sci. Eng., A 702, 81 (2017).
S.Z. Han, M. Goto, J-H. Ahn, S.H. Lim, S. Kim, and J. Lee: Grain growth in ultrafine grain sized copper during cyclic deformation. J. Alloys Compd. 615, S587 (2014).
H. Hoppel, M. Kautz, C. Xu, M. Murashkin, T. Langdon, R. Valiev, and H. Mughrabi: An overview: Fatigue behaviour of ultrafine-grained metals and alloys. Int. J. Fatigue 28, 1001 (2006).
S. Kobayashi, A. Kamata, and T. Watanabe: A mechanism of grain growth-assisted intergranular fatigue fracture in electrodeposited nanocrystalline nickel–phosphorus alloy. Acta Mater. 91, 70 (2015).
O. Glushko and G. Dehm: Initiation and stagnation of room temperature grain coarsening in cyclically strained gold films. Acta Mater. 169, 99 (2019).
P. Zhao, B. Chen, J. Kelleher, G. Yuan, B. Guan, X. Zhang, and S. Tu: High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium. Acta Mater. 174, 29 (2019).
H. Mughrabi, H.W. Höppel, and M. Kautz: Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scr. Mater. 51, 807 (2004).
T.A. Furnish, A. Mehta, D. Van Campen, D.C. Bufford, K. Hattar, and B.L. Boyce: The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe. J. Mater. Sci. 52, 46 (2016).
L.J. Jing, Q.S. Pan, J.Z. Long, N.R. Tao, and L. Lu: Effect of volume fraction of gradient nanograined layer on high-cycle fatigue behavior of Cu. Scr. Mater. 161, 74 (2019).
M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials (Cambridge University Press, New York, 2009).
S. Suresh: Fatigue of Materials, 2nd ed. (Cambridge University Press, New York, 1998).
Y.T. Zhu, X.Z. Liao, and X.L. Wu: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).
J.W. Cahn, Y. Mishin, and A. Suzuki: Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953 (2006).
M. Legros, D.S. Gianola, and K.J. Hemker: In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56, 3380 (2008).
L. Margulies, G. Winther, and H.F. Poulsen: In situ measurement of grain rotation during deformation of polycrystals. Science 291, 2392 (2001).
K. Wierzbanowski, M. Wronski, A. Baczmanski, B. Bacroix, P. Lipinski, and A. Lodini: Problem of lattice rotation due to plastic deformation. Example of rolling of F.C.C materials. Arch. Metall. Mater. 56, 575 (2011).
G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).
M. Hommel and O. Kraft: Deformation behavior of thin copper films on deformable substrates. Acta Mater. 49, 3935 (2001).
S.P. Lacour, S. Wagner, Z. Huang, and Z. Suo: Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404 (2003).
M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
H.F. Poulsen, L. Margulies, S. Schmidt, and G. Winther: Lattice rotations of individual bulk grains—Part I: 3D X-ray characterization. Acta Mater. 51, 3821 (2003).
F. Mompiou and M. Legros: Quantitative grain growth and rotation probed by in situ TEM straining and orientation mapping in small grained Al thin films. Scr. Mater. 99, 5 (2015).
P. Zhang, J.Y. Zhang, J. Li, G. Liu, K. Wu, Y.Q. Wang, and J. Sun: Microstructural evolution, mechanical properties and deformation mechanisms of nanocrystalline Cu thin films alloyed with Zr. Acta Mater. 76, 221 (2014).
D. Wang, C.A. Volkert, and O. Kraft: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).
Acknowledgments
This work was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 51601198 and 51571199) and partially be NSFC (Grant Nos. 51771207) and Natural Science Foundation of Liaoning Province of China (Grant No. 20180510025).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Zheng, SX., Luo, XM. & Zhang, GP. Cumulative shear strain–induced preferential orientation during abnormal grain growth near fatigue crack tips of nanocrystalline Au films. Journal of Materials Research 35, 372–379 (2020). https://doi.org/10.1557/jmr.2019.409
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2019.409