Skip to main content
Log in

Cumulative shear strain–induced preferential orientation during abnormal grain growth near fatigue crack tips of nanocrystalline Au films

  • Nanomechanics and Testing
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A detailed electron backscatter diffraction (EBSD) characterization was utilized to investigate abnormal grain growth behavior of nanocrystalline (NC) Au films constrained by a flexible substrate under cyclic loading. Abnormally grown grains (AGGs) in front of about 15 fatigue cracks were picked out to investigate the grain reorientation behavior during abnormal grain growth in the fatigue crack tip in the cyclically deformed thin films. It shows that the AGGs exhibited 〈001〉 orientation along the loading direction, whereas grains grown far away from fatigue cracks had no significant texture change. The cyclic cumulative shear strain was found to play a key role in grain reorientation. A lattice rotation model was proposed to elucidate the grain reorientation mechanism during abnormal grain growth. Such grain reorientation behavior of NC metals was found to provide an intrinsic resistance of the NC metals to fatigue damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J. Schiotz and K.W. Jacobsen: A maximum in the strength of nanocrystalline copper. Science 301, 1357 (2003).

    Article  CAS  Google Scholar 

  2. H. Mughrabi and H.W. Höppel: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32, 1413 (2010).

    Article  CAS  Google Scholar 

  3. L. Wang, J. Teng, P. Liu, A. Hirata, E. Ma, Z. Zhang, M. Chen, and X. Han: Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat. Commun. 5, 4402 (2014).

    Article  CAS  Google Scholar 

  4. D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).

    Article  CAS  Google Scholar 

  5. A.M. Minor, E.T. Lilleodden, E.A. Stach, and J.W. Morris: Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19, 176 (2004).

    Article  CAS  Google Scholar 

  6. R.A. Meirom, D.H. Alsem, A.L. Romasco, T. Clark, R.G. Polcawich, J.S. Pulskamp, M. Dubey, R.O. Ritchie, and C.L. Muhlstein: Fatigue-induced grain coarsening in nanocrystalline platinum films. Acta Mater. 59, 1141 (2011).

    Article  CAS  Google Scholar 

  7. M.W. Kapp, T. Kremmer, C. Motz, B. Yang, and R. Pippan: Structural instabilities during cyclic loading of ultrafine-grained copper studied with micro bending experiments. Acta Mater. 125, 351 (2017).

    Article  CAS  Google Scholar 

  8. K. Zhang, J.R. Weertman, and J.A. Eastman: Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87, 061921 (2005).

    Article  CAS  Google Scholar 

  9. H.W. Höppel, Z.M. Zhou, H. Mughrabi, and R.Z. Valiev: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82, 1781 (2002).

    Article  Google Scholar 

  10. O. Glushko and M.J. Cordill: The driving force governing room temperature grain coarsening in thin gold films. Scr. Mater. 130, 42 (2017).

    Article  CAS  Google Scholar 

  11. X-M. Luo, X. Li, and G-P. Zhang: Forming incoherent twin boundaries: A new way for nanograin growth under cyclic loading. Mater. Res. Lett. 5, 95 (2017).

    Article  CAS  Google Scholar 

  12. X.M. Luo, X.F. Zhu, and G.P. Zhang: Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat. Commun. 5, 3021 (2014).

    Article  CAS  Google Scholar 

  13. B.L. Boyce and H.A. Padilla: Anomalous fatigue behavior and fatigue-induced grain growth in nanocrystalline nickel alloys. Metall. Mater. Trans. A 42, 1793 (2011).

    Article  CAS  Google Scholar 

  14. Z.W. Shan: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).

    Article  CAS  Google Scholar 

  15. W.A. Soer, J.T.M. De Hosson, A.M. Minor, J.W. Morris, Jr., and E.A. Stach: Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films. Acta Mater. 52, 5783 (2004).

    Article  CAS  Google Scholar 

  16. G.J. Fan, L.F. Fu, H. Choo, P.K. Liaw, and N.D. Browning: Uniaxial tensile plastic deformation and grain growth of bulk nanocrystalline alloys. Acta Mater. 54, 4781 (2006).

    Article  CAS  Google Scholar 

  17. H.A. Padilla and B.L. Boyce: A review of fatigue behavior in nanocrystalline metals. Exp. Mech. 50, 5 (2009).

    Article  CAS  Google Scholar 

  18. S. Cheng, Y.H. Zhao, Y.M. Wang, Y. Li, X.L. Wang, P.K. Liaw, and E.J. Lavernia: Structure modulation driven by cyclic deformation in nanocrystalline NiFe. Phys. Rev. Lett. 104, 255501 (2010).

    Article  CAS  Google Scholar 

  19. G.J. Fan, L.F. Fu, D.C. Qiao, H. Choo, P.K. Liaw, and N.D. Browning: Grain growth in a bulk nanocrystalline Co alloy during tensile plastic deformation. Scr. Mater. 54, 2137 (2006).

    Article  CAS  Google Scholar 

  20. T.A. Furnish, B.L. Boyce, J.A. Sharon, C.J. O’Brien, B.G. Clark, C.L. Arrington, and J.R. Pillars: Fatigue stress concentration and notch sensitivity in nanocrystalline metals. J. Mater. Res. 31, 740 (2016).

    Article  CAS  Google Scholar 

  21. J.Z. Long, Q.S. Pan, N.R. Tao, and L. Lu: Abnormal grain coarsening in cyclically deformed gradient nanograined Cu. Scr. Mater. 145, 99 (2018).

    Article  CAS  Google Scholar 

  22. T. Kondo, X. Bi, H. Hirakata, and K. Minoshima: Mechanics of fatigue crack initiation in submicron-thick freestanding copper films. Int. J. Fatigue 82, 12 (2016).

    Article  CAS  Google Scholar 

  23. S.X. Zheng, X.M. Luo, D. Wang, and G.P. Zhang: A novel evaluation strategy for fatigue reliability of flexible nanoscale films. Mater. Res. Express 5, 035012 (2018).

    Article  CAS  Google Scholar 

  24. X.M. Luo and G.P. Zhang: Grain boundary instability dependent fatigue damage behavior in nanoscale gold films on flexible substrates. Mater. Sci. Eng., A 702, 81 (2017).

    Article  CAS  Google Scholar 

  25. S.Z. Han, M. Goto, J-H. Ahn, S.H. Lim, S. Kim, and J. Lee: Grain growth in ultrafine grain sized copper during cyclic deformation. J. Alloys Compd. 615, S587 (2014).

    Article  CAS  Google Scholar 

  26. H. Hoppel, M. Kautz, C. Xu, M. Murashkin, T. Langdon, R. Valiev, and H. Mughrabi: An overview: Fatigue behaviour of ultrafine-grained metals and alloys. Int. J. Fatigue 28, 1001 (2006).

    Article  CAS  Google Scholar 

  27. S. Kobayashi, A. Kamata, and T. Watanabe: A mechanism of grain growth-assisted intergranular fatigue fracture in electrodeposited nanocrystalline nickel–phosphorus alloy. Acta Mater. 91, 70 (2015).

    Article  CAS  Google Scholar 

  28. O. Glushko and G. Dehm: Initiation and stagnation of room temperature grain coarsening in cyclically strained gold films. Acta Mater. 169, 99 (2019).

    Article  CAS  Google Scholar 

  29. P. Zhao, B. Chen, J. Kelleher, G. Yuan, B. Guan, X. Zhang, and S. Tu: High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium. Acta Mater. 174, 29 (2019).

    Article  CAS  Google Scholar 

  30. H. Mughrabi, H.W. Höppel, and M. Kautz: Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation. Scr. Mater. 51, 807 (2004).

    Article  CAS  Google Scholar 

  31. T.A. Furnish, A. Mehta, D. Van Campen, D.C. Bufford, K. Hattar, and B.L. Boyce: The onset and evolution of fatigue-induced abnormal grain growth in nanocrystalline Ni–Fe. J. Mater. Sci. 52, 46 (2016).

    Article  CAS  Google Scholar 

  32. L.J. Jing, Q.S. Pan, J.Z. Long, N.R. Tao, and L. Lu: Effect of volume fraction of gradient nanograined layer on high-cycle fatigue behavior of Cu. Scr. Mater. 161, 74 (2019).

    Article  CAS  Google Scholar 

  33. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials (Cambridge University Press, New York, 2009).

    Google Scholar 

  34. S. Suresh: Fatigue of Materials, 2nd ed. (Cambridge University Press, New York, 1998).

    Book  Google Scholar 

  35. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).

    Article  CAS  Google Scholar 

  36. J.W. Cahn, Y. Mishin, and A. Suzuki: Coupling grain boundary motion to shear deformation. Acta Mater. 54, 4953 (2006).

    Article  CAS  Google Scholar 

  37. M. Legros, D.S. Gianola, and K.J. Hemker: In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56, 3380 (2008).

    Article  CAS  Google Scholar 

  38. L. Margulies, G. Winther, and H.F. Poulsen: In situ measurement of grain rotation during deformation of polycrystals. Science 291, 2392 (2001).

    Article  CAS  Google Scholar 

  39. K. Wierzbanowski, M. Wronski, A. Baczmanski, B. Bacroix, P. Lipinski, and A. Lodini: Problem of lattice rotation due to plastic deformation. Example of rolling of F.C.C materials. Arch. Metall. Mater. 56, 575 (2011).

    Article  CAS  Google Scholar 

  40. G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).

    Article  CAS  Google Scholar 

  41. M. Hommel and O. Kraft: Deformation behavior of thin copper films on deformable substrates. Acta Mater. 49, 3935 (2001).

    Article  CAS  Google Scholar 

  42. S.P. Lacour, S. Wagner, Z. Huang, and Z. Suo: Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404 (2003).

    Article  CAS  Google Scholar 

  43. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  44. H.F. Poulsen, L. Margulies, S. Schmidt, and G. Winther: Lattice rotations of individual bulk grains—Part I: 3D X-ray characterization. Acta Mater. 51, 3821 (2003).

    Article  CAS  Google Scholar 

  45. F. Mompiou and M. Legros: Quantitative grain growth and rotation probed by in situ TEM straining and orientation mapping in small grained Al thin films. Scr. Mater. 99, 5 (2015).

    Article  CAS  Google Scholar 

  46. P. Zhang, J.Y. Zhang, J. Li, G. Liu, K. Wu, Y.Q. Wang, and J. Sun: Microstructural evolution, mechanical properties and deformation mechanisms of nanocrystalline Cu thin films alloyed with Zr. Acta Mater. 76, 221 (2014).

    Article  CAS  Google Scholar 

  47. D. Wang, C.A. Volkert, and O. Kraft: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 51601198 and 51571199) and partially be NSFC (Grant Nos. 51771207) and Natural Science Foundation of Liaoning Province of China (Grant No. 20180510025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Mei Luo or Guang-Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, SX., Luo, XM. & Zhang, GP. Cumulative shear strain–induced preferential orientation during abnormal grain growth near fatigue crack tips of nanocrystalline Au films. Journal of Materials Research 35, 372–379 (2020). https://doi.org/10.1557/jmr.2019.409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.409

Navigation