Skip to main content
Log in

Synthesis of N-TiO2/BiOI/RGO composites with significantly enhanced visible light photocatalytic activity

  • Organic and Hybrid Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, four N-TiO2/bismuth oxyiodide (BiOI)/reduced graphene oxide (RGO) composite photocatalysts with different composite ratios were prepared using a hydrothermal method. The phase, surface structure, specific surface area, and light response were characterized by X-ray diffraction, X-ray photoelectron spectrum analysis, scanning electron microscopy, specific surface area and aperture analysis, and UV-vis diffuse reflection spectrum analysis. The results indicated that the N-TiO2/BiOI/RGO (NTGB) composite prepared with a mass ratio of 1:1:2 is a promising photocatalyst for the degradation of organic pollutants by using sunlight, with a specific surface area of 139.56 (m2/g), bandgap of 1.24 eV, and strong absorption with a smaller visible region.

It has the best photocatalytic properties under visible light irradiation in the degradation of methylene blue (MB): the degradation rate of MB in the presence of light for 60 min reached 99.22%, and its photocatalytic performance was significantly higher than that of TiO2, N-TiO2, BiOI, N-TiO2/BiOI, BiOI/RGO, NTGB1, NTGB2, and NTGB4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. H. Zhang, J.L. Zhang, and R.J. Sun: Preparation of magnetic and photocatalytic cenosphere deposited with Fe3O4/SiO2/Eu-doped TiO2 core/shell nanoparticles. J. Mater. Res. 23, 3700 (2015).

    Article  CAS  Google Scholar 

  2. S.R. Fu, Y.M. He, and Q. Wu: Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J. Mater. Res. 31, 2252 (2016).

    Article  CAS  Google Scholar 

  3. W. Zhang, C. Wang, and X. Liu: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 23, 1 (2017).

    Google Scholar 

  4. Y. Yan, T.R. Chen, and Y.C. Zou: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 5, 1383 (2016).

    Article  Google Scholar 

  5. S. Chabri, A. Dhara, and B. Show: Mesoporous CuO–ZnO p–n heterojunction based nanocomposites with high specific surface area for enhanced photocatalysis and electrochemical sensing. Catal. Sci. Technol. 6, 3238 (2016).

    Article  CAS  Google Scholar 

  6. E.J. Park, H.J. Jo, H.J. Kim, K. Cho, and J. Jung: Effects of gamma-ray treatment on wastewater toxicity from a rubber products factory. Radioanal. Nucl. Chem. 277, 619 (2008).

    Article  CAS  Google Scholar 

  7. Z. Zheng, X.H. Zheng, H.T. Wang, and Q.G. Du: Macroporous graphene oxide-polymer composite prepared through pickering high internal phase emulsions. ACS Appl. Mater. Interfaces 5, 7974 (2013).

    Article  CAS  Google Scholar 

  8. X. Gu, L. Li, Y. Wang, P. Dai, H. Wang, and X. Zhao: Hierarchical tubular structures constructed from rutile TiO2 nanorods with superior sodium storage properties. Electrochim. Acta 211, 77 (2016).

    Article  CAS  Google Scholar 

  9. X. Wang, Q. Meng, Y. Wang, H. Liang, Z. Bai, K. Wang, X. Lou, B. Cai, and L. Yang: TiO2 hierarchical hollow microspheres with different size for application as anodes in high-performance lithium storage. Appl. Energy 175, 488 (2016).

    Article  CAS  Google Scholar 

  10. H. Irie, Y. Watanabe, and K. Hashimoto: Preparation, characterization and photocatalytic activity of composite catalyst K3PW12O40/TiO2. Phys. Chem. B 107, 5483 (2005).

    Article  Google Scholar 

  11. M. Batzill, E.H. Morales, and U. Diebold: First-principles study on electronic structure and optical properties of Ce-doped ZnO, CeN-co-doped TiO2 and transparent conductive oxide In4Sn3O12 and In4Ge3O12. Phys. Rev. Lett. 96, 026103 (2006).

    Article  Google Scholar 

  12. D.V. Cristiana, P. Gianfranco, and S. Annabella: The energy band structure of S-TiO2 was studied by first-principles method. Phys. Chem. 109, 11414 (2005).

    Google Scholar 

  13. D.V. Cristiana, P. Gianfranco, and S. Annabella: Preparation characterization and photocatalytic properties of titanium dioxide doped with metal ions and metal ions. Chem. Mater. 17, 6656 (2005).

    Article  Google Scholar 

  14. Z.M. Wang, Y.M. Li, and R.H. Liao: Preparation and photocatalytic properties of NiO/TiO2 nanotubes by hydrothermal method. Acta Photonica Sin. 48, 031603 (2016).

    Google Scholar 

  15. H.J. Yang, M.Z. Shao, and J.X. Zhou: Study on photocatalytic activity and light corrosion resistance of Ag2O/TiO2 heterostructure. J. Synth. Cryst. 46, 243 (2017).

    CAS  Google Scholar 

  16. C. Liu, Y. Yang, and W. Li: A novel Bi2S3 nanowire@TiO2 nanorod heterogeneous nanostructure for photoelectrochemical hydrogen generation. Chem. Eng. J. 302, 717 (2016).

    Article  CAS  Google Scholar 

  17. X. Li, T. Xia, and C.H. Xu: Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts. Catal. Today 225, 64 (2014).

    Article  CAS  Google Scholar 

  18. S. Gao, C. Guo, and J. Lv: A novel 3D hollow magnetic Fe3O4/BiOI heterojunction with enhanced photocatalytic performance for bisphenol A degradation. Chem. Eng. J. 307, 1055 (2017).

    Article  CAS  Google Scholar 

  19. X. Li, J. Xia, and W. Zhu: Facile synthesis of few-layered MoS2 modified BiOI with enhanced visible-light photocatalytic activity. Colloid. Surf. Physicochem. Eng. Asp. 511, 1 (2016).

    Article  CAS  Google Scholar 

  20. F.P. Huang, M.L. Cui, and Y.Y. Guo: Preparation and photocatalytic performance of TiO2-BiOI with high visible activity. Fine Chem. Eng. 36, 231 (2019).

    Google Scholar 

  21. C.X. Li, X. Yang, and G.W. Tan: Preparation and photocatalytic performance of WO3/TiO2–RGO composites. J. Lanzhou Univ. Technol. 43, 25 (2017).

    Google Scholar 

  22. X. Lei, Y. Wei, and W. Guo: One-pot solvothermal preparation and enhanced photocatalytic activity of metallic silver and graphene co-doped BiVO4 ternary systems. Appl. Surf. Sci. 332, 682 (2015).

    Article  Google Scholar 

  23. S. Shah: Single-step solvothermal syn-thesis of mesoporous Ag–TiO2-reduced graphene oxide ternary composites with enhanced photocatalytic activity. Nanoscale 5, 5093 (2013).

    Article  Google Scholar 

  24. B.H. He, M.J. Zhou, and Z.H. Hou: Facile synthesis of Ni3S2/rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. J. Mater. Res. 3, 517 (2018).

    Google Scholar 

  25. Y.Y. Yu, M.Y. Yu, and Y. Zhang: Preparation and doping mechanism of nitrogen-doped titanium dioxide powders. Chin. J. Inorg. Chem. 29, 1654 (2013).

    Google Scholar 

  26. L. Zhang, C.C. Zhao, and X.Y. Gao: Preparation of MoS2/BiOI composite photocatalyst and its photocatalytic REDOX properties. Acta Chim. Sin. 11, 1 (2018).

    Google Scholar 

  27. Z.K. Cui, F.L. Zhang, and Z. Zheng: In situ construction of BiOBr/Ag3PO4 composites with enhanced visible light photocatalytic performances. J. Mater. Res. 29, 3254 (2014).

    Article  Google Scholar 

  28. M. Thommes, K. Kaneko, and V. Neimark Alexander: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl. Chem. 64, 1051 (2015).

    Article  Google Scholar 

  29. A. Sharma and B.K. Lee: Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol. J. Environ. Manage. 181, 563 (2016).

    Article  CAS  Google Scholar 

  30. F.J. Wu, X. Li, and W. Liu: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nano heterojunctions. Appl. Surf. Sci. 405, 60 (2017).

    Article  CAS  Google Scholar 

  31. C. Burda, Y.B. Lou, and X.B. Chen: Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett. 3, 1049 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We acknowledge the financial support of the Heilongjiang natural fund project [Grant No. B2017012].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Limei Xue or Fengzhi An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, L., An, F., Yang, Y. et al. Synthesis of N-TiO2/BiOI/RGO composites with significantly enhanced visible light photocatalytic activity. Journal of Materials Research 35, 153–161 (2020). https://doi.org/10.1557/jmr.2019.401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.401

Navigation