Skip to main content
Log in

Controlled nanostructures and simultaneous passivation of black phosphorus (phosphorene) with Nafion

  • Organic and Hybrid Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Structural evolution induced and driven by a dual system and simultaneous passivation of phosphorene are reported. Different nano-objects of phosphorene or black phosphorus (BP) are obtained using a new method of exfoliation, in which solvent and an ionic polymer are combined to weaken the van der Waals forces and to scissor the nanosheets. Nanoribbons, nanorods, and nanoneedles are obtained under mechanical force and ambient conditions. Ionic polymer chains assist in curling the monolayer or few-layer nanosheet. Nafion is chosen to exfoliate the bulk BP and induce a morphological transition in BP nanosheets. The exfoliation of BP nanosheets results into thin and specific structures such as nanosheets/rods/needles. The nanosheets of phosphorene are covered and passivated simultaneously by the polymeric sheath that protects the nanosheets from degradation or oxidation and can be integrated with a device directly without any further coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Scheme 2
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Forsov: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005).

    Article  CAS  Google Scholar 

  2. S. Wang, D. Scarabelli, L. Lu, Y.Y. Kuznetsova, L.N. Pfeiffer, K.W. West, G.C. Gardner, M.J. Manfra, V. Pelligrini, S.J. Wind, and A. Pinczuk: Observation of Dirac bands in artificial graphene in small period nanopatterned GaAs quantum well. Nat. Nanotechnol. 13, 29 (2018).

    Article  CAS  Google Scholar 

  3. A. Radocea, T. Sun, T.H. Vo, A. Sinistkii, N.R. Aluru, and J.W. Lyding: Solution-synthesized chevron graphene nanoribbons exfoliated onto H:Si(100). Nano Lett. 17, 170 (2017).

    Article  CAS  Google Scholar 

  4. M. Chhowalla, D. Jena, and H. Zhang: Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  CAS  Google Scholar 

  5. A. Carvalho, M. Wang, X. Zhu, A.S. Rodin, H. Su, and A.H. Castro Neto: Phosphorene: From theory to applications (Nature Reviews Materials, 2016); p. 16061.

  6. S. Soleimanikahnoj and I. Knezevic: Tunable electronic properties of multilayer phosphorene and its nanoribbons. J. Comput. Electron. 16, 568 (2017).

    Article  CAS  Google Scholar 

  7. J. Kim, S.S. Baik, S.H. Ryu, Y. Sohn, S. Park, B.G. Park, J. Denlinger, Y. Yi, H.J. Choi, and K.S. Kim: Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science 349 (2015).

  8. Q. Wei and X. Peng: Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett. 104, 251915 (2014).

    Article  Google Scholar 

  9. V. Sresht, A.A.H. Padua, and D. Blankschtein: Liquid-phase exfoliation of phosphorene: Design rules from molecular dynamics simulations. ACS Nano 9, 8255 (2015).

    Article  CAS  Google Scholar 

  10. A.E. Castillo Del Rio, V. Pellegrini, H. Sun, J. Buha, D.A. Dinh, E. Lago, A. Ansaldo, A. Capasso, L. Manna, and F. Bonaccorso: Exfoliation of few-layer black phosphorus in low-boiling-point solvents and its applications in Li-ion batteries. Chem. Mater. 30, 506 (2018).

    Article  Google Scholar 

  11. J. Kang, S.A. Wells, J.D. Wood, J.H. Lee, X. Liu, C.R. Ryder, J. Zhu, J.R. Guest, C.A. Husko, and M.C. Hersam: Stable aqueous dispersion of optically and electronically active phosphorene. Proc. Natl. Acad. Sci. U. S. A. 113, 11688 (2016).

    Article  CAS  Google Scholar 

  12. M.C. Watts, F.S. Picco, L. Russel-Pavier, P.L. Cullen, T.S. Miller, S.P. Bartus, O.D. Payton, N.T. Skipper, V. Tileli, and C.A. Howard: Production of phosphorene nanoribbons. Nature 568, 216 (2019).

    Article  CAS  Google Scholar 

  13. K.A. Mauritz, K.A. Moore, and R.B. Moore: State of understanding nafion. Chem. Rev. 104, 4535 (2004).

    Article  CAS  Google Scholar 

  14. H.L. Tang and M. Pan: Synthesis and characterization of a self-assembled nafion/silica nanocomposite membrane for polymer electrolyte membrane fuel cells. J. Phys. Chem. C 112, 30 (2008).

    Google Scholar 

  15. H. Wang, H.W. Lee, Y. Deng, Z. Lu, P. Hsu, Y. Liu, D. Lin, and Y. Cui: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015).

    Article  CAS  Google Scholar 

  16. A. Kumar: Simultaneous passivation and encapsulation of black phosphorus nanosheets (phosphorene) by optically active polypeptide micelles for biosensors. ACS Appl. Nano Mater. 2, 2397 (2019).

    Article  CAS  Google Scholar 

  17. X. Niu, Y. Li, Y. Zhang, Q. Li, Q. Zhou, J. Zhao, and J. Wang: Photo-oxidative degradation and protection mechanism of black phosphorus: Insights from ultrafast dynamics. J. Phys. Chem. Lett. 9, 5034 (2018).

    Article  CAS  Google Scholar 

  18. J. Zhang, S. Shin, and W. Lu: Highly ambient-stable few-layer black phosphorene by pulsed laser exfoliation HEMM. Chem. Commun. 55, 2601 (2019).

    Article  CAS  Google Scholar 

  19. T.K. Mukhopadhya and A. Datta: Ordering any dynamics for the formation of two-dimensional molecular crystals on black phosphorene. J. Phys. Chem. C 121, 10210 (2017).

    Article  Google Scholar 

  20. E.J. Roche, M. Pineri, and R. Duplessix: Phase separation in perfluorosulfonate ionomer membranes. J. Polym. Sci., Polym. Phys. Ed. 20, 107 (1982).

    Article  CAS  Google Scholar 

  21. H.M. Jakani, I.Z. Lopez, V.H. Mareau, and L. Gonon: Optimization of hydrophilic/hydrophobic phase separation in sPEEK membranes by hydrothermal treatments. Phys. Chem. Chem. Phys. 19, 16013 (2017).

    Article  Google Scholar 

  22. Y. Li, F. Ma, and L. Wang: Phosphorene oxide as a promising cathode material for sealed non-aqueous Li-oxygen batteries. J. Mater. Chem. A 6, 7815 (2018).

    Article  CAS  Google Scholar 

  23. T. Nilges: Expressway to partially oxidized phosphorene. Proc. Natl. Acad. Sci. U. S. A. 115, 4311 (2018).

    Article  CAS  Google Scholar 

  24. R. Quhe, Q. Li, Q. Zhang, Y. Wang, H. Zhang, J. Li, X. Zhang, D. Chen, K. Liu, Y. Ye, L. Dai, F. Pan, M. Lei, and J. Lu: Simulations of quantum transport in sub-5 nm monolayer phosphorene transistors. Phys. Rev. Appl. 10, 024022 (2018).

    Article  CAS  Google Scholar 

  25. S. Fotoohi: Tunable rectification and negative differential resistance induced by asymmetric doping in phosphorene nanoribbon. Phys. Lett. A 383, 369 (2019).

    Article  CAS  Google Scholar 

  26. H. Guo, N. Lu, J. Dai, X. Wu, and X.C. Zeng: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118, 14051 (2014).

    Article  CAS  Google Scholar 

  27. G. Seifert and E.R. Hernandez: Theoretical predictions of phosphorus nanotubes. Chem. Phys. Lett. 318, 355 (2000).

    Article  CAS  Google Scholar 

  28. D. Pan, T.C. Wang, C. Wang, W. Guo, and Y. Yao: Self-assembled chiral phosphorus nanotubes from phosphorene: A molecular dynamics study. RSC Adv. 7, 24647 (2017).

    Article  CAS  Google Scholar 

  29. P. Lazar, E. Otyepkova, M. Pykal, K. Cepe, and M. Otyepka: Role of the puckered anisotropic surface in the surface and adsorption properties of black phosphorus. Nanoscale 10, 8979 (2018).

    Article  CAS  Google Scholar 

  30. Y. Deng, Z. Luo, N.J. Conrad, H. Liu, Y. Gong, S. Najmaei, P.M. Ajayan, J. Lou, X. Xu, and P.D. Ye: Black phosphorus-monolayer MoS2 van der Waals heterojunction p–n diode. ACS Nanos 8, 8292 (2014).

    Article  CAS  Google Scholar 

  31. M.T. Edmond, A. Tadich, A. Carvalho, A. Ziletti, K.M. O’Donnell, S.P. Koenig, D.F. Coker, B. Ozyilmaz, A.H. Castro Neto, and M.S. Fuhrer: Creating a stable oxide at the surface of black phosphorus. ACS Appl. Mater. Interfaces 7, 14557 (2015).

    Article  Google Scholar 

  32. W. Hu, L. Lin, R. Zhang, C. Yang, and J. Yang: Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons. J. Am. Chem. Soc. 139, 15429 (2017).

    Article  CAS  Google Scholar 

  33. K. Zhang, B. Jin, C. Park, Y. Cho, X. Song, X. Shi, S. Zhang, W. Kim, H. Zeng, and J.H. Park: Black phosphorene as a hole extraction layer boosting solar water splitting of oxygen evolution catalysts. Nat. Commun. 10, 2001 (2019).

    Article  Google Scholar 

  34. L. Kou, T. Frauenheim, and C. Chen: Phosphorene as a superior gas sensor: Selective adsorption and distinct IV response. J. Phys. Chem. Lett. 5, 2675 (2014).

    Article  CAS  Google Scholar 

  35. K. Kalantar-zadeh and J. Zhen Ou: Biosensors based on two-dimensional MoS2. ACS Sens. 1, 5 (2016).

    Article  CAS  Google Scholar 

  36. M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang: Black-phosphorous-based pulsed lasers: 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater. 7, 1970001 (2019).

    Article  Google Scholar 

  37. Y. Zhou, M. Zhang, Z. Guo, L. Miao, S.T. Han, Z. Wang, X. Zhang, H. Zhang, and Z. Peng: Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horiz. 4, 997 (2017).

    Article  CAS  Google Scholar 

  38. Z. Guo, S. Chen, Z. Wang, Z. Yang, Z. Liu, F. Xu, Y. Wang, J. Yi, Y. Liao, L. Chu, P. Yu, and X. Feng: Metal-ion-modified black phosphorus with enhanced stability and transistor performance. Adv. Mater. 29, 1703811 (2017).

    Article  Google Scholar 

  39. J. Zheng, Z. Yang, S. Chen, Z. Liang, X. Chen, R. Cao, Z. Guo, K. Wang, Y. Zhang, J. Ji, M. Zhang, D. Fan, and H. Zhang: Black phosphorus based all-optical-signal-processing: Towards high performances and enhanced stability. ACS Photonics 4, 1466 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author appreciates the generous support extended by the Linus Pauling Professor C.N.R. Rao, FRS. Assistance from the staff of Raman spectrometer, AFM, and TEM facilities group, ICMS, JNCASR, Bangalore, India, is also acknowledged. Authors thanks DST (India) and Sheikh Saqr Scholarship (UAE) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avneesh Kumar.

Supplementary Material

43578_2020_35020141_MOESM1_ESM.docx

Controlled Nanostructures and Simultaneous Passivation of Black Phosphorus (Phosphorene) with Nafion, approximately 280 KB

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A. Controlled nanostructures and simultaneous passivation of black phosphorus (phosphorene) with Nafion. Journal of Materials Research 35, 141–152 (2020). https://doi.org/10.1557/jmr.2019.395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.395

Navigation