Skip to main content
Log in

Interfacial polyelectrolyte complexation spinning of graphene/cellulose nanofibrils for fiber-shaped electrodes

  • Organic and Hybrid Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphene-based flexible and wearable supercapacitors have been produced by wet spinning, in which organic solvent coagulating bath was prerequisite and spacers were usually incorporated to improve the electrochemical property but sacrificing the mechanical property. In this work, a nonorganic solvent spinning technology named as interfacial polyelectrolyte complexation (IPC), which was based on the spontaneous self-assembly of two oppositely charged polyelectrolyte solutions/suspensions to form continuous fibers on drawing in their interfaces, was proposed to fabricate graphene fiber–shaped electrodes for supercapacitors. Due to the excellent mechanical performance and hydrophilicity, cellulose nanofibrils (CNFs) were added to serve as an efficient reinforcing agent and spacer of graphene fiber electrodes. Consequently, the mechanical performance and specific capacitance of the fibers were improved but electrical conductivity was declined. Taking overall consideration, CNF/rGO60 fiber electrode possessed a superior integrated performance with a capacitance of 182.6 F/g, tensile strength of 480 MPa, and electrical conductivity of 5538.7 S/m. The IPC spinning provided an environmentally friendly strategy for the fabrication of fiber-shaped functional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. H. Minjeong, P. Jonghwa, L. Youngoh, and K. Hyunhyub: Triboelectric generators and sensors for self-powered wearable electronics. ACS Nano 9, 4 (2015).

    Google Scholar 

  2. Z. Wei, S. Lin, L. Qiao, C. Song, W. Fei, and T. Xiao-Ming: Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 26, 31 (2014).

    Google Scholar 

  3. X. Cai, M. Peng, X. Yu, Y. Fu, and D. Zou: Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J. Mater. Chem. C 2, 7 (2014).

    Google Scholar 

  4. Y. Shao, M.F. El-Kady, L.J. Wang, Q. Zhang, Y. Li, H. Wang, M.F. Mousavi, and R.B. Kaner: Graphene-based materials for flexible supercapacitors. ChemInform 46, 30 (2015).

    Google Scholar 

  5. D. Yu, K. Goh, H. Wang, L. Wei, W. Jiang, Q. Zhang, L. Dai, and Y. Chen: Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat. Nanotechnol. 9, 7 (2014).

    Google Scholar 

  6. D. Yu, S. Zhai, W. Jiang, K. Goh, L. Wei, X. Chen, R. Jiang, and Y. Chen: Transforming pristine carbon fiber tows into high performance solid-state fiber supercapacitors. Adv. Mater. 27, 33 (2015).

    Google Scholar 

  7. W. Guoping, Z. Lei, and Z. Jiujun: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 2 (2012).

    Article  Google Scholar 

  8. A. Ramadoss, K.Y. Yoon, M.J. Kwak, S.I. Kim, S.T. Ryu, and J.H. Jang: Fully flexible, lightweight, high performance all-solid-state supercapacitor based on 3-dimensional-graphene/graphite-paper. J. Power Sources 337, 159 (2017).

    Article  CAS  Google Scholar 

  9. M.A. Sakka, H. Gualous, and J.V. Mierlo: Characterization of supercapacitors matrix. Electrochim. Acta 55, 25 (2010).

    Article  CAS  Google Scholar 

  10. P. Simon and Y. Gogotsi: Materials for electrochemical capacitors. Nat. Mater. 7, 11 (2008).

    Article  CAS  Google Scholar 

  11. J. Yan, W. Qian, W. Tong, and Z. Fan: Supercapacitors: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4, 4 (2014).

    Google Scholar 

  12. M. Vangari, T. Pryor, and L. Jiang: Supercapacitors: Review of materials and fabrication methods. J. Energy Eng. 139, 2 (2013).

    Article  Google Scholar 

  13. E. Raymundo-Piñero, F. Leroux, and F. Béguin: A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv. Mater. 18, 14 (2010).

    Google Scholar 

  14. K. Wang, Q. Meng, Y. Zhang, Z. Wei, and M. Miao: High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater. 25, 10 (2013).

    Article  CAS  Google Scholar 

  15. H. Yue, C. Huhu, Z. Fei, C. Nan, J. Lan, F. Zhihai, and Q. Liangti: All-in-one graphene fiber supercapacitor. Nanoscale 6, 12 (2014).

    Google Scholar 

  16. M. Yuning, Z. Yang, H. Chuangang, C. Huhu, H. Yue, Z. Zhipan, S. Gaoquan, and Q. Liangti: All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv. Mater. 25, 16 (2013).

    Google Scholar 

  17. M. Pumera: Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 3 (2011).

    Article  Google Scholar 

  18. M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff: Graphene-based ultracapacitors. Nano Lett. 8, 10 (2008).

    Article  CAS  Google Scholar 

  19. X. Yang and D. Li: Electrolyte-mediated dense integration of graphene materials for compact capacitive energy storage. Science 341, 6145 (2013).

    Article  CAS  Google Scholar 

  20. Z. Xu and C. Gao: Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 1 (2011).

    Google Scholar 

  21. T. Huang, B. Zheng, L. Kou, K. Gopalsamy, Z. Xu, C. Gao, Y. Meng, and Z. Wei: Flexible high performance wet-spun graphene fiber supercapacitors. RSC Adv. 3, 46 (2013).

    Google Scholar 

  22. T. Huang, B. Zheng, Z. Liu, L. Kou, and C. Gao: High rate capability supercapacitors assembled from wet-spun graphene films with a CaCO3 template. J. Mater. Chem. A 3, 5 (2015).

    Google Scholar 

  23. Z. Li, T. Huang, W. Gao, Z. Xu, D. Chang, C. Zhang, and C. Gao: Hydrothermally activated graphene fiber fabrics for textile electrodes of supercapacitors. ACS Nano 11, 11 (2017).

    Google Scholar 

  24. H. Tieqi, C. Xingyuan, C. Shengying, Y. Qiuyan, C. Hao, L. Yingjun, G. Karthikeyan, X. Zhen, G. Weiwei, and G. Chao: Tri-high designed graphene electrodes for long cycle-life supercapacitors with high mass loading. Energy Storage Mater. 17, 349 (2019).

    Article  Google Scholar 

  25. Z. Dong, C. Jiang, H. Cheng, Y. Zhao, G. Shi, L. Jiang, and L. Qu: Facile fabrication of light, flexible and multifunctional graphene fibers. Adv. Mater. 24, 14 (2012).

    Google Scholar 

  26. Z. Xu, H. Sun, X. Zhao, and C. Gao: Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25, 2 (2013).

    Article  Google Scholar 

  27. S. Chen, W. Ma, Y. Cheng, Z. Weng, B. Sun, L. Wang, W. Chen, F. Li, M. Zhu, and H.M. Cheng: Scalable non-liquid-crystal spinning of locally aligned graphene fibers for high-performance wearable supercapacitors. Nano Energy 15, 642 (2015).

    Article  CAS  Google Scholar 

  28. Y. Yu, Y. Sun, C. Cao, S. Yang, H. Liu, P. Li, P. Huang, and W. Song: Graphene-based composite supercapacitor electrodes with diethylene glycol as inter-layer spacer. J. Mater. Chem. A 2, 21 (2014).

    Google Scholar 

  29. L. Kou, T. Huang, B. Zheng, Y. Han, X. Zhao, K. Gopalsamy, H. Sun, and C. Gao: Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 5 (2014).

    Article  CAS  Google Scholar 

  30. G. Sun, J. Liu, X. Zhang, X. Wang, H. Li, Y. Yu, W. Huang, H. Zhang, and P. Chen: Fabrication of ultralong hybrid microfibers from nanosheets of reduced graphene oxide and transition-metal dichalcogenides and their application as supercapacitors. Angew. Chem. 53, 46 (2015).

    Google Scholar 

  31. Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, and L.C. Qin: Graphene and nanostructured MnO composite electrodes for supercapacitors. Carbon 49, 9 (2011).

    Google Scholar 

  32. G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. Mcdonough, X. Cui, Y. Cui, and Z. Bao: Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett. 11, 7 (2011).

    Google Scholar 

  33. G. Chen, T. Chen, K. Hou, W. Ma, M. Tebyetekerwa, Y. Cheng, W. Weng, and M. Zhu: Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon 127, 218 (2018).

    Article  CAS  Google Scholar 

  34. G. Xin, W. Zhu, Y. Deng, J. Cheng, L.T. Zhang, A.J. Chung, S. De, and J. Lian: Microfluidics-enabled orientation and microstructure control of macroscopic graphene fibres. Nat. Nanotechnol. 14, 2 (2019).

    Article  CAS  Google Scholar 

  35. X. Zhen, S. Haiyan, Z. Xiaoli, and G. Chao: Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25, 2 (2013).

    Article  Google Scholar 

  36. Z. Xu, Y. Liu, X. Zhao, L. Peng, H. Sun, Y. Xu, X. Ren, C. Jin, P. Xu, and M. Wang: Ultrastiff and strong graphene fibers via full-scale synergetic defect engineering. Adv. Mater. 28, 30 (2016).

    Google Scholar 

  37. R. Jalili, S.H. Aboutalebi, D. Esrafilzadeh, R.L. Shepherd, J. Chen, S. Aminorroaya-Yamini, K. Konstantinov, A.I. Minett, J.M. Razal, and G.G. Wallace: Graphene oxide: Scalable one-step wet-spinning of graphene fibers and yarns from liquid crystalline dispersions of graphene oxide: Towards multifunctional textiles. Adv. Funct. Mater. 23, 43 (2013).

    Google Scholar 

  38. Y. Zhang, J. Peng, M. Li, E. Saiz, S.E. Wolf, and Q. Cheng: Bioinspired supertough graphene fiber through sequential interfacial interactions. ACS Nano 12, 9 (2018).

    Google Scholar 

  39. K. Zhang and H. Liimatainen: Hierarchical assembly of nanocellulose-based filaments by interfacial complexation. Small 14, 38 (2018).

    Google Scholar 

  40. M.S. Toivonen, S. Kurkisuonio, W. Wagermaier, V. Hynninen, S. Hietala, and O. Ikkala: Interfacial polyelectrolyte complex spinning of cellulose nanofibrils for advanced bicomponent fibers. Biomacromolecules 18, 4 (2017).

    Article  CAS  Google Scholar 

  41. O. Nechyporchuk, R. Bordes, and T. Köhnke: Wet spinning of flame-retardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles. ACS Appl. Mater. Interfaces 9, 44 (2017).

    Article  CAS  Google Scholar 

  42. R. Grande, E. Trovatti, A.J. Carvalho, and A. Gandini: Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. J. Mater. Chem. A 5, 25 (2017).

    Article  Google Scholar 

  43. M. Amaike, Y. Senoo, and H. Yamamoto: Sphere, honeycomb, regularly spaced droplet and fiber structures of polyion complexes of chitosan and gellan. Macromol. Rapid Commun. 19, 6 (1998).

    Article  Google Scholar 

  44. C. Clemons: Nanocellulose in spun continuous fibers: A review and future outlook. J. Renewable Mater. 4, 5 (2016).

    Google Scholar 

  45. A.C. Wan, M.F. Cutiongco, B.C. Tai, M.F. Leong, H.F. Lu, and E.K. Yim: Fibers by interfacial polyelectrolyte complexation–processes, materials and applications. Mater. Today 19, 8 (2016).

    Article  CAS  Google Scholar 

  46. A.J. Granero, J.M. Razal, G.G. Wallace, and M. in het Panhuis: Mechanical reinforcement of continuous flow spun polyelectrolyte complex fibers. Macromol. Biosci. 9, 4 (2010).

    Google Scholar 

  47. A.J. Granero, J.M. Razal, G.G. Wallace, and M.I.H. Panhuis: Cover picture: Spinning carbon nanotube-gel fibers using polyelectrolyte complexation (adv. Funct. Mater. 23/2008). Adv. Funct. Mater. 18, 23 (2008).

    Google Scholar 

  48. F.L. Meng, J.K.C. Toh, D. Chan, K. Narayanan, F.L. Hong, T.C. Lim, A.C.A. Wan, and J.Y. Ying: Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat. Commun. 4, 4 (2013).

    Google Scholar 

  49. K. Ohkawa, Y. Takahashi, M. Yamada, and H. Yamamoto: Polyion complex fiber and capsule formed by self-assembly of chitosan and poly(α,l-glutamic acid) at solution interfaces. Macromol. Mater. Eng. 286, 3 (2015).

    Google Scholar 

  50. A.C. Wan, E.K. Yim, I.C. Liao, V.C. Le, and K.W. Leong: Encapsulation of biologics in self-assembled fibers as biostructural units for tissue engineering. J. Biomed. Mater. Res., Part A 71, 4 (2004).

    Google Scholar 

  51. A.C.A. Wan, F.L. Meng, J.K.C. Toh, Y. Zheng, and J.Y. Ying: Multicomponent fibers by multi-interfacial polyelectrolyte complexation. Adv. Healthcare Mater. 1, 1 (2012).

    Article  CAS  Google Scholar 

  52. J.P. Reddy and J.W. Rhim: Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic. J. Nat. Fibers 15, 4 (2018).

    Article  CAS  Google Scholar 

  53. L. Geng, B. Chen, X. Peng, and T. Kuang: Strength and modulus improvement of wet-spun cellulose I filaments by sequential physical and chemical cross-linking. Mater. Des. 136, 45 (2017).

    Article  CAS  Google Scholar 

  54. Y. Mao, K. Liu, C. Zhan, L. Geng, B. Chu, and B.S. Hsiao: Characterization of nanocellulose using small-angle neutron, X-ray, and dynamic light scattering techniques. J. Phys. Chem. B 121, 6 (2017).

    Article  CAS  Google Scholar 

  55. L. Geng, X. Peng, C. Zhan, A. Naderi, P.R. Sharma, Y. Mao, and B.S. Hsiao: Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength. Cellulose 24, 12 (2017).

    Article  CAS  Google Scholar 

  56. V. Zargar, M. Asghari, and A. Dashti: A review on chitin and chitosan polymers: Structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev. 2, 3 (2015).

    Article  Google Scholar 

  57. C.K.S. Pillai, W. Paul, and C.P. Sharma: Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 34, 7 (2009).

    Article  CAS  Google Scholar 

  58. C. Yao, Z. Xiong, D. Zhang, Y. Peng, and Y. Ma: High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49, 2 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Scientific Research Foundation of Fujian University of Technology (E0600339), Development fund of Fujian University of Technology (E0100589), and National Nature Science Foundation of China (No.51503069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihong Geng or Binyi Chen.

Supplementary Material

43578_2020_35020122_MOESM1_ESM.docx

Supporting Information: Fiber-shape Electrodes Based on Graphene/Cellulose Nanofibrils by Interfacial Polyelectrolyte Complexation Spinning, approximately 336 KB

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Wen, S., Peng, X. et al. Interfacial polyelectrolyte complexation spinning of graphene/cellulose nanofibrils for fiber-shaped electrodes. Journal of Materials Research 35, 122–131 (2020). https://doi.org/10.1557/jmr.2019.390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.390

Navigation