Skip to main content
Log in

Enhancement of the optical properties of copper sulfate crystal by the influence of shock waves

  • Electronic, Photonic and Magnetic Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A systematic analysis was carried out to study the effect of shock waves on copper sulfate crystal in such a way that its optical properties and surface morphological properties were examined for different number of shock pulses (0, 1, 3, 5, and 7) with the constant Mach number 1.7. The test crystal of copper sulfate was grown by slow evaporation technique. The surface morphological and optical properties were scrutinized by optical microscope and ultraviolet–visible spectrometer, respectively. On exposing to shock waves, the optical transmission of the test crystal started increasing from the range of 35–45% with the increase of shock pulses and thereafter started decreasing to 25% for higher number of applied shocks. The optical band transition modes and optical band gap energies were calculated for pre- and post-shock wave loaded conditions. The experimentally obtained data prove that the optical constants such as absorption coefficient, extinction coefficient, skin depth, optical density, and optical conductivity are strongly altered, so also the optical transmission due to the impact of shock waves. Hence, shock wave induced high transmission test crystal can be used as an appropriate candidate for ultraviolet light filter applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. V. Jayaram and K.P.J. Reddy: Experimental study of the effect of strong shock heated test gases with cubic zirconia. Adv. Mater. Lett. 7, 100 (2016).

    Google Scholar 

  2. A. Sivakumar, S. Suresh, S. Balachandar, J. Thirupathy, J. Kalyana Sundar, and S.A. Martin Britto Dhas: Effect of shock waves on thermophysical properties of ADP and KDP crystals. Opt. Laser Technol. 111, 284 (2019).

    Article  CAS  Google Scholar 

  3. S. Kalaiarasi, A. Sivakumar, S.A. Martin Britto Dhas, and M. Jose: Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube. Mater. Lett. 219, 72 (2018).

    Article  CAS  Google Scholar 

  4. A. Sivakumar, S. Suresh, J. Anto Pradeep, S. Balachandar, and S.A. Martin Britto Dhas: Effect of shock waves on dielectric properties of KDP crystal. J. Electron. Mater. 47, 4831 (2018).

    Article  CAS  Google Scholar 

  5. Y. Meshcheyakov, S. Atroshenko, A. Divakov, and N. Naumova: The conditions for dynamic recrystallization of metals in shock waves. AIP Conf. Proc. 1426, 1367 (2012).

    Article  CAS  Google Scholar 

  6. G. Xiao, X. Yang, X. Zhang, K. Wang, X. Huang, Z. Ding, Y. Ma, G. Zou, and B. Zou: A protocol to fabricate nanostructured new phase: B31-type MnS synthesized under high pressure. J. Am. Chem. Soc. 137, 10297–10303 (2015).

    Article  CAS  Google Scholar 

  7. G. Xiao, Y. Wang, D. Han, K. Li, X. Feng, P. Lv, K. Wang, L. Liu, S.A.T. Redfern, and B. Zou: Pressure-induced large emission enhancements of cadmium selenide nanocrystals. J. Am. Chem. Soc. 140, 13970–13975 (2018).

    Article  CAS  Google Scholar 

  8. A. Sivakumar and S.A. Martin Britto Dhas: Shock-wave-induced nucleation leading to crystallization in water. J. Appl. Crystallogr. 52, 1016–1021 (2019).

    Article  CAS  Google Scholar 

  9. L. Zhang, C. Liu, L. Wang, C. Liu, K. Wang, and B. Zou: Pressure-induced emission enhancement, band-gap narrowing, and metallization of halide perovskite Cs3Bi2I9. Angew. Chem., Int. Ed. 57, 1–6 (2018).

    Article  Google Scholar 

  10. A. Sivakumar, A. Saranraj, S. Sahaya Jude Dhas, and S.A. Martin Britto Dhas: Shock wave induced enhancement of optical properties of benzil crystal. Mater. Res. Express 6, 046205 (2019).

    Article  Google Scholar 

  11. P.A. Urtiew: Effect of shock loading on transparency of sapphire crystals. J. Appl. Phys. 45, 3490 (1974).

    Article  CAS  Google Scholar 

  12. O.V. Fatyanov, R.L. Webb, and Y.M. Gupta: Optical transmission through inelastically deformed shocked sapphire: Stress and crystal orientation effects. J. Appl. Phys. 97, 123529 (2005).

    Article  Google Scholar 

  13. N.A. Bakr, T.A. Al-Dhahir, and S.B. Mohammad: Growth of copper sulfate pentahydrate single crystals by slow evaporation technique. J. Appl. Phys. 13, 4651 (2017).

    CAS  Google Scholar 

  14. F.S. Williamson: Basic copper sulphate. J. Phys. Chem. 27, 380 (1923).

    Google Scholar 

  15. R.C. Zumstein and R.W. Rousseau Anomalous: Anomalous growth of large and small copper sulfate pentahydrate crystals. Ind. Eng. Chem. Res. 28, 289 (1989).

    Article  CAS  Google Scholar 

  16. R. Manimekalai and C. Ramachandra Raja: EDTA effect on copper sulphate penta hydrate-A NLO material. Int. Res. J. Pure Appl. Chem. 3, 391 (2013).

    Article  CAS  Google Scholar 

  17. A. Saranraj, S. Sahaya Jude Dhas, G. Vinitha, and S.A. Martin Britto Dhas: Third harmonic generation and thermo-physical properties of benzophenone single crystal for photonic applications. Mater. Res. Express 4, 106204 (2017).

    Article  Google Scholar 

  18. M. Kladkaew, N. Samranlertrit, V. Vailikhit, P. Teesetsopon, and A. Tubtimtae: Effect of annealing process on the properties of undoped and manganese2+-doped co-binary copper telluride and tin telluride thin films. Ceram. Interfaces 44, 7186 (2018).

    Article  CAS  Google Scholar 

  19. Y.I. Meshcheryakov, A.K. Divakov, S.A. Atroshenko, and N.S. Naumova: Effect of velocity nonuniformity on the dynamic recrystallization of metals in shock waves. Tech. Phys. Lett. 36, 1125 (2010).

    Article  CAS  Google Scholar 

  20. A.E. Gleason, C.A. Bolme, H.J. Lee, B. Nagler, E. Galtier, D. Milathianaki, J. Hawreliak, R.G. Kraus, J.H. Eggert, D.E. Fratanduono, G.W. Collins, R. Sandberg, W. Yang, and W.L. Mao: Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun. 6, 8191 (2015).

    Article  CAS  Google Scholar 

  21. M.A. Gaffar and A. Abu El-Fadl: Effect of doping and irradiation on optical parameters of triglycine sulphate single crystals. Cryst. Res. Technol. 34, 915 (1999).

    Article  CAS  Google Scholar 

  22. A.S. Hassanien and A.A. Akl: Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. J. Alloys Compd. 648, 280 (2015).

    Article  CAS  Google Scholar 

  23. A. Sivakumar, A. Saranraj, S. Sahaya Jude Dhas, M. Jose, and S.A. Martin Britto Dhas: Shock wave-induced defect engineering for investigation on optical properties of triglycine sulfate crystal. Opt. Eng. 58, 077104 (2019).

    Google Scholar 

Download references

Acknowledgment

The authors thank the management of Sacred Heart College for the financial support through Don Bosco Research Grant (SHC/DB Grant/2017/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathiyadhas Amalapushpam Martin Britto Dhas.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivakumar, A., Sarumathi, M., Sahaya Jude Dhas, S. et al. Enhancement of the optical properties of copper sulfate crystal by the influence of shock waves. Journal of Materials Research 35, 391–400 (2020). https://doi.org/10.1557/jmr.2019.383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.383

Navigation