Skip to main content
Log in

Magnetic properties and thermal stability of polyvinylidene fluoride—Fe2O3 nanocomposites

  • Organic and Hybrid Functional Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocomposites of polyvinylidene fluoride loaded with various amounts of γ-Fe2O nanoparticles, with an average size ranging between 20 and 40 nm, have been obtained by melt mixing and investigated using various experimental techniques [Superconducting Quantum Interference Device, Mössbauer, and Thermogravimetric Analysis]. Magnetic and Mössbauer measurements confirmed the presence of maghemite and a trace of a paramagnetic iron compound. Magnetic data are consistent with a blocking temperature close to room temperature (RT), showing a decrease in the coercive field as the temperature is increased. A weak exchange bias was noticed in all nanocomposites investigated at all temperatures and tentatively ascribed to surface spin disorder. The temperature dependence of the coercive field obeys the Kneller law. The nanocomposites exhibit superparamagnetic behavior near RT. Most magnetic measurements have been performed below the blocking temperature, revealing thus a complex behavior. The dependence of the mass loss derivative versus temperature, as obtained by thermogravimetric analysis, exhibits a single peak due to the thermal degradation of the polymeric matrix. A weak increase in the thermal stability of the polymeric matrix upon loading with maghemite is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. T. Furukawa: Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions 18, 143 (1989).

    Article  CAS  Google Scholar 

  2. S. Baskaran, N. Ramachandran, X. He, S. Thiruvannamalai, H.J. Lee, H. Heo, Q. Chen, and J.Y. Fu: Giant flexoelectricity in polyvinylidene fluoride films. Phys. Lett. A 375, 2082 (2011).

    Article  CAS  Google Scholar 

  3. M. Poulsen, S. Ducharme, M. Poulsen, and S. Ducharme: Why ferroelectric polyvinylidene fluoride is special. IEEE Trans. Dielectr. Electr. Insul. 17, 1028 (2010).

    Article  CAS  Google Scholar 

  4. F. He, J. Fan, and L.H. Chan: Preparation and characterization of electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) membrane. High Perform. Polym. 26, 817 (2014).

    Article  Google Scholar 

  5. M. Li, I. Katsouras, C. Piliego, G. Glasser, I. Lieberwirth, P.W.M. Blom, and D.M. de Leeuw: Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. J. Mater. Chem. C 46, 7695 (2013).

    Article  Google Scholar 

  6. A. Biswas, K. Henkel, D. Schmeißer, and D. Mandal: Comparison of the thermal stability of the α, β and γ phases in poly(vinylidene fluoride) based on in situ thermal Fourier transform infrared spectroscopy. Phase Transitions 90, 1205 (2017).

    CAS  Google Scholar 

  7. S. Abdalla, A. Obaid, and F.M. Al-Marzouki: Preparation and characterization of poly(vinylidene fluoride): A high dielectric performance nano-composite for electrical storage. Results Phys. 6, 617 (2016).

    Article  Google Scholar 

  8. V. Sencadas, M.V. Moreira, S. Lanceros-Méndez, A.S. Pouzada, and R. Gregório Filho: Α- to β transformation on PVDF films obtained by uniaxial stretch. Mater. Sci. Forum 514–516, 872 (2006).

    Article  Google Scholar 

  9. N. Cai, J. Zhai, C. Nan, Y. Lin, and Z. Shi: Dielectric, ferroelectric, magnetic, and magnetoelectric properties of multiferroic laminated composites. Phys. Rev. B 68, 224103 (2003).

    Article  Google Scholar 

  10. C. Nan, N. Cai, L. Liu, J. Zhai, Y. Ye, and Y. Lin: Coupled magnetic–electric properties and critical behavior in multiferroic particulate composites. J. Appl. Phys. 94, 5930 (2003).

    Article  CAS  Google Scholar 

  11. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan: Multiferroic magnetoelectric composites: Historical perspective, status. J. Appl. Physiol. 103, 031101 (2008).

    Article  Google Scholar 

  12. O.M. Lemine, K. Omri, M. Iglesias, V. Velasco, P. Crespo, P. de la Presa, L. El Mir, H. Bouzid, A. Yousif, and A. Al-Hajry: γ-Fe2O3 by sol–gel with large nanoparticles size for magnetic hyperthermia application. J. Alloys Compd. 607, 125 (2014).

    Article  CAS  Google Scholar 

  13. D. Cao, H. Li, L. Pan, J. Li, X. Wang, P. Jing, X. Cheng, W. Wang, J. Wang, and Q. Liu: High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach. Sci. Rep. 6, 1 (2016).

    Article  CAS  Google Scholar 

  14. R. Strobel and S.E. Pratsinis: Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv. Powder Technol. 20, 190 (2009).

    Article  CAS  Google Scholar 

  15. H. Khurshid, M.H. Phan, P. Mukherjee, and H. Srikanth: Tuning exchange bias in Fe/γ-Fe2O3 core–shell nanoparticles: Impacts of interface and surface spins. Appl. Phys. Lett. 104, 1 (2014).

    Article  Google Scholar 

  16. S. Shekhar, E.P. Sajitha, V. Prasad, and S.V. Subramanyam: High coercivity below percolation threshold in polymer nanocomposite. J. Appl. Phys. 104, 083910 (2008).

    Article  Google Scholar 

  17. M. Chipara, T. George, Y. Xu, R. Skomski, L. Yue, N. Ali, and D.J. Sellmyer: Magnetism of FePt nanoclusters in polyimide. J. Nanomater. 2015, 587847 (2015).

    Google Scholar 

  18. Y. Jin, S. Valloppilly, D.M. Chipara, R. Skomski, M. Chipara, W. Zhang, and D.J. Sellmyer: On polystyrene–block polyisoprene–block polystyrene filled with carbon-coated Ni nanoparticles. J. Mater. Sci. 52, 2452 (2017).

    Article  CAS  Google Scholar 

  19. A. Lu, E.L. Salabas, and F. Schüth: Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. 46, 1222 (2007).

    Article  CAS  Google Scholar 

  20. S. Radhakrishnan, C. Saujanya, P. Sonar, I. Gopalkrishnan, and J. Yakhmi: Polymer-mediated synthesis of γ-Fe2O3 nano-particles. Polyhedron 20, 1489 (2001).

    Article  CAS  Google Scholar 

  21. S. Babay, T. Mhiri, and M. Toumi: Synthesis, structural and spectroscopic characterizations of maghemite γ-Fe2O3 prepared by one-step coprecipitation route. J. Mol. Struct. 1085, 286–293 (2015).

    Article  CAS  Google Scholar 

  22. G. Ennas, A. Musinu, G. Piccaluga, D. Zedda, D. Gatteschi, C. Sangregorio, J.L. Stanger, G. Concas, and G. Spano: Characterization of iron oxide nanoparticles in an Fe2O3–SiO2 composite prepared by a sol–gel method. Chem. Mater. 10, 495 (1998).

    Article  CAS  Google Scholar 

  23. W. Xiao, Z. Wang, H. Guo, X. Li, J. Wang, S. Huang, and L. Gan: Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries. Appl. Surf. Sci. 266, 148 (2013).

    Article  CAS  Google Scholar 

  24. C.T. Fleaca, I. Morjan, R. Alexandrescu, F. Dumitrache, I. Soare, and L. Gavrila-florescu: Magnetic properties of core–shell catalyst nanoparticles for carbon nanotube growth. Appl. Surf. Sci. 255, 5386 (2009).

    Article  CAS  Google Scholar 

  25. I.V. Ovsienko, L.Y. Matzuy, N.I. Zakharenko, N.G. Babich, T.A. Len, Y.I. Prylutsky, D. Hui, Y.M. Strzhemechny, and P.C. Eklund: Magnetometric studies of catalyst refuses in nanocarbon materials. Nanoscale Res. Lett. 3, 60 (2008).

    Article  CAS  Google Scholar 

  26. M.S. Islam, M. Abdulla-Al-Mamun, J. Kurawaki, Y. Kusumoto, and M.Z. Bin Mukhlish: Hydrothermal novel synthesis of neck-structured hyperthermia-suitable magnetic (Fe3O4, γ-Fe2O3, and α-Fe2O3) nanoparticles. J. Sci. Res. 4, 99 (2012).

    Article  CAS  Google Scholar 

  27. H. Wu, G. Wu, and L. Wang: Peculiar porous α-Fe2O3, γ-Fe2O3, and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties. Powder Technol. 269, 443 (2015).

    Article  CAS  Google Scholar 

  28. A. Tomescu, R. Alexandrescu, I. Morjan, F. Dumitrache, L. Gavrila-Florescu, R. Birjega, I. Soare, G. Prodan, Z. Bastl, A. Galikova, and J. Pola: Structural and sensing properties of a novel Fe/Fe2O3/polyoxocarbosilane core shell nanocomposite powder prepared by laser pyrolysis. J. Mater. Sci. 42, 1838 (2007).

    Article  CAS  Google Scholar 

  29. C.W. Jung and P. Jacobs: Physical and chemical properties of superparamagnetic iron oxide MR contrast agents. Ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 13, 661 (1995).

    Article  CAS  Google Scholar 

  30. L. Li, W. Jiang, K. Luo, H. Song, F. Lan, Y. Wu, and Z. Gu: Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3, 595 (2013).

    Article  Google Scholar 

  31. M.D. Carvalho, F. Henriques, L.P. Ferreira, M. Godinho, and M.M. Cruz: Iron oxide nanoparticles: The influence of synthesis method and size on composition and magnetic properties. J. Solid State Chem. 201, 144 (2013).

    Article  CAS  Google Scholar 

  32. K. Rumpf, P. Granitzer, P.M. Morales, P. Poelt, and M. Reissner: Variable blocking temperature of a porous silicon/Fe3O4 composite due to different interactions of the magnetic nanoparticles. Nanoscale Res. Lett. 7, 445 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Defense Grant “Raman Spectrometer for the Characterization of Advanced Materials and Nanomaterials,” W911NF-15-1-0063, the NSF DMR-1523577: UTRGV-UMN Partnership for Fostering Innovation by Bridging Excellence in Research and Student Success.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Chipara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuncser, V., Chipara, D., Martirosyan, K.S. et al. Magnetic properties and thermal stability of polyvinylidene fluoride—Fe2O3 nanocomposites. Journal of Materials Research 35, 132–140 (2020). https://doi.org/10.1557/jmr.2019.375

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.375

Navigation