Skip to main content

Advertisement

Log in

Conformal porous carbon coating on carbon fiber cloth/NiS2 composites by molecular layer deposition for durable supercapacitor electrodes

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To solve the poor cyclability of faradic supercapacitors (SCs), the authors reported a unique porous carbon (PC) coating with “gap shell” structure on carbon fiber cloth (CFC)/NiS2 materials. This gap shell PC coating was fabricated by combining atomic layer deposition (ALD) Al2O3 and molecular layer deposition alucone, followed by carbonization and etching. The as-prepared CFC/NiS2/PC composites were directly used as binder-free electrodes for SCs. Benefited from its novel nanostructure, the CFC/NiS2/PC electrode shows a large specific capacitance of 1034.6 F/g at 1 A/g and considerable rate capability of 67% capacitance, retaining ratio within 1–20 A/g. The cyclability of the CFC/NiS2/PC electrode is enhanced by 50% relative to the mere CFC/NiS2 after 2000 cycles, which is attributed to the gap and electrically conductive PC coating. Hence, this work provides a promising approach to design gap shell layer for improved cyclability of faradic SCs and other practical applications in energy storage electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J. Zhu, S.C. Tang, J. Wu, X.L. Shi, B.G. Zhu, and X.K. Meng: Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4–NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv. Energy Mater. 7, 1601234 (2017).

    Article  CAS  Google Scholar 

  2. Y.L. Shao, M.F. El-Kady, J.Y. Sun, Y.G. Li, Q.H. Zhang, M.F. Zhu, H.Z. Wang, B. Dunn, and R.B. Kaner: Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233 (2018).

    Article  CAS  Google Scholar 

  3. A. Muzaffar, M.B. Ahamed, K. Deshmukh, and J. Thirumalai: A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable Sustainable Energy Rev. 101, 123 (2019).

    Article  CAS  Google Scholar 

  4. Q. Xue, Y. Tian, S.Z. Deng, Y. Huang, M.S. Zhu, Z.X. Pei, H.F. Li, F. Liu, and C.Y. Zhi: LaB6 nanowires for supercapacitors. Mater. Today Energy 10, 28 (2018).

    Article  Google Scholar 

  5. S. Wang, B. Pei, X. Zhao, and R.A.W. Dryfe: Highly porous graphene on carbon cloth as advanced electrodes for flexible all-solid-state supercapacitors. Nano Energy 2, 530 (2013).

    Article  CAS  Google Scholar 

  6. J. Azadmanjiri, V.K. Srivastava, P. Kumar, M. Nikzad, J. Wang, and A. Yu: Two-and three-dimensional graphene-based hybrid composites for advanced energy storage and conversion devices. J. Mater. Chem. A 6, 702 (2018).

    Article  CAS  Google Scholar 

  7. J. Azadmanjiri, V.K. Srivastava, P. Kumar, J. Wang, and A. Yu: Graphene-supported 2D transition metal oxide heterostructures. J. Mater. Chem. A 6, 13509 (2018).

    Article  CAS  Google Scholar 

  8. B. Zhang, C. Song, C. Liu, J. Min, J. Azadmanjiri, Y. Ni, R. Niu, J. Gong, Q. Zhao, and T. Tang: Molten salts promoting the “controlled carbonization” of waste polyesters into hierarchically porous carbon for high-performance solar steam evaporation. J. Mater. Chem. A 7, 22912 (2019).

    Article  CAS  Google Scholar 

  9. Y. Wen, K. Kierzek, J. Min, X. Chen, J. Gong, R. Niu, X. Wen, J. Azadmanjiri, E. Mijowska, and T. Tang: Porous carbon nanosheet with high surface area derived from waste poly(ethylene terephthalate) for supercapacitor applications. J. Appl. Polym. Sci. 137, 48338 (2019).

    Article  CAS  Google Scholar 

  10. J. Min, X. Xu, J. Li, C. Ma, J. Gong, X. Wen, X. Chen, J. Azadmanjiri, and T. Tang: Sustainable polylysine conversion to nitrogen-containing porous carbon flakes: Potential application in supercapacitors. J. Appl. Polym. Sci. 136, 48214 (2019).

    Article  CAS  Google Scholar 

  11. L.N. Jin, P. Liu, C. Jin, J.N. Zhang, and S.W. Bian: Porous WO3/graphene/polyester textile electrode materials with enhanced electrochemical performance for flexible solid-state supercapacitors. J. Colloid Interface Sci. 510, 1 (2018).

    Article  CAS  Google Scholar 

  12. Z.H. Yang, F.F. Xu, W.X. Zhang, Z.S. Mei, B. Pei, and X. Zhu: Controllable preparation of multishelled NiO hollow nanospheres via layer-by-layer self-assembly for supercapacitor application. J. Power Sources 246, 24 (2014).

    Article  CAS  Google Scholar 

  13. C. Guan, X. Qian, X.H. Wang, Y.Q. Cao, Q. Zhang, A.D. Li, and J. Wang: Atomic layer deposition of Co3O4 on carbon nanotubes/carbon cloth for high-capacitance and ultrastable supercapacitor electrode. Nanotechnology 26, 9 (2015).

    Google Scholar 

  14. W.J. Song, J. Wu, G.J. Wang, S.C. Tang, G. Chen, M.J. Cui, and X.K. Meng: Rich-mixed-valence NixCo3−xPy porous nanowires interwelded junction-free 3D network architectures for ultrahigh areal energy density supercapacitors. Adv. Funct. Mater. 28, 1804620 (2018).

    Article  CAS  Google Scholar 

  15. X.H. Lu, G.M. Wang, T. Zhai, M.H. Yu, S.L. Xie, Y.C. Ling, C.L. Liang, Y.X. Tong, and Y. Li: Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. Nano Lett. 12, 5376 (2012).

    Article  CAS  Google Scholar 

  16. Y.Q. Cao, X. Qian, W. Zhang, M. Li, S.S. Wang, D. Wu, and A.D. Li: Self-formed porous Ni(OH)2 on Ni3S2/Ni foam during electrochemical cycling for high performance supercapacitor with ultrahigh areal capacitance. Electrochim. Acta 303, 148 (2019).

    Article  CAS  Google Scholar 

  17. S.G. Chen, Y.H. Li, B.X. Wu, Z.X. Wu, F.J. Li, J.H. Wu, P. Liu, and H.B. Li: 3D meso/macroporous Ni3S2@Ni composite electrode for high-performance supercapacitor. Electrochim. Acta 275, 40 (2018).

    Article  CAS  Google Scholar 

  18. X.Y. Yan, X.L. Tong, L. Ma, Y.M. Tian, Y.S. Cai, C.W. Gong, M.G. Zhang, and L.P. Liang: Synthesis of porous NiS nanoflake arrays by ion exchange reaction from NiO and their high performance supercapacitor properties. Mater. Lett. 124, 133 (2014).

    Article  CAS  Google Scholar 

  19. L.L. Li, Y.H. Ding, H.J. Huang, D.S. Yu, S.Y. Zhang, H.Y. Chen, S. Ramakrishna, and S.J. Peng: Controlled synthesis of unique Co9S8 nanostructures with carbon coating as advanced electrode for solid-state asymmetric supercapacitors. J. Colloid Interface Sci. 540, 389–397 (2019).

    Article  CAS  Google Scholar 

  20. L.J. Cao, G. Tang, J. Mei, and H. Liu: Construct hierarchical electrode with NixCo3−xS4 nanosheet coated on NiCo2O4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors. J. Power Sources 359, 262 (2017).

    Article  CAS  Google Scholar 

  21. Z.Y. Gao, C. Chen, J.L. Chang, L.M. Chen, P.Y. Wang, D.P. Wu, F. Xu, Y.M. Guo, and K. Jiang: Enhanced cycleability of faradic CoNi2S4 electrode by reduced graphene oxide coating for efficient asymmetric supercapacitor. Electrochim. Acta 281, 394 (2018).

    Article  CAS  Google Scholar 

  22. Y. Chang, Y.W. Sui, J.Q. Qi, L.Y. Jiang, Y.Z. He, F.X. Wei, Q.K. Meng, and Y.X. Jin: Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim. Acta 226, 69 (2017).

    Article  CAS  Google Scholar 

  23. C.S. Dai, P.Y. Chien, J.Y. Lin, S.W. Chou, W.K. Wu, P.H. Li, K.Y. Wu, and T.W. Lin: Hierarchically structured Ni3S2/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 5, 12168 (2013).

    Article  CAS  Google Scholar 

  24. J. Wang, D.L. Chao, J.L. Liu, L.L. Li, L.F. Lai, J.Y. Lin, and Z.X. Shen: Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy 7, 151 (2014).

    Article  CAS  Google Scholar 

  25. H. Pang, C.Z. Wei, X.X. Li, G.C. Li, Y.H. Ma, S.J. Li, J. Chen, and J.S. Zhang: Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production. Sci. Rep. 4, 3577 (2014).

    Article  Google Scholar 

  26. K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, and S.J. Kim: One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem. Eng. J. 251, 116 (2014).

    Article  CAS  Google Scholar 

  27. E. Kamali-Heidari, Z-L. Xu, M.H. Sohi, A. Ataie, and J-K. Kim: Core–shell structured Ni3S2 nanorods grown on interconnected Ni-graphene foam for symmetric supercapacitors. Electrochim. Acta 271, 507 (2018).

    Article  CAS  Google Scholar 

  28. X.H. Lu, T.Y. Liu, T. Zhai, G.M. Wang, M.H. Yu, S.L. Xie, Y.C. Ling, C.L. Liang, Y.X. Tong, and Y. Li: Improving the cycling stability of metal-nitride supercapacitor electrodes with a thin carbon shell. Adv. Energy Mater. 4, 1300994 (2014).

    Article  CAS  Google Scholar 

  29. Y.P. Chen, B.R. Liu, Q. Liu, J. Wang, Z.S. Li, X.Y. Jing, and L.H. Liu: Coaxial CoMoO4 nanowire arrays with chemically integrated conductive coating for high-performance flexible all-solid-state asymmetric supercapacitors. Nanoscale 7, 15159–15167 (2015).

    Article  CAS  Google Scholar 

  30. J. Azadmanjiri, J. Wang, C.C. Berndt, and A. Yu: 2D layered organic–inorganic heterostructures for clean energy applications. J. Mater. Chem. A 6, 3824 (2018).

    Article  CAS  Google Scholar 

  31. C. Guan, X. Xia, N. Meng, Z. Zeng, X. Cao, C. Soci, H. Zhang, and H.J. Fan: Hollow core–shell nanostructure supercapacitor electrodes: Gap matters. Energy Environ. Sci. 5, 9085 (2012).

    Article  CAS  Google Scholar 

  32. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart: Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co, and Ni. Appl. Surf. Sci. 257, 2717 (2011).

    Article  CAS  Google Scholar 

  33. T. Tian, L. Huang, L.H. Ai, and J. Jiang: Surface anion-rich NiS2 hollow microspheres derived from metal–organic frameworks as a robust electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 5, 20985 (2017).

    Article  CAS  Google Scholar 

  34. X. Liang, M. Yu, J. Li, Y.B. Jiang, and A.W. Weimer: Ultra-thin microporous-mesoporous metal oxide films prepared by molecular layer deposition (MLD). Chem. Commun., 7140 (2009).

    Google Scholar 

  35. R.Z. Li, Y.M. Wang, C. Zhou, C. Wang, X. Ba, Y.Y. Li, X.T. Huang, and J.P. Liu: Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability. Adv. Funct. Mater. 25, 5384–5394 (2015).

    Article  CAS  Google Scholar 

  36. Z.P. Ma, F.Y. Jing, Y.Q. Fan, L.Y. Hou, L. Su, L.K. Fan, and G.J. Shao: High-stability MnOx nanowires@C@MnOx nanosheet core–shell heterostructure pseudocapacitance electrode based on reversible phase transition mechanism. Small 15, e1900862 (2019).

    Article  CAS  Google Scholar 

  37. W. Ni, B. Wang, J.L. Cheng, X.D. Li, Q. Guan, G.F. Gu, and L. Huang: Hierarchical foam of exposed ultrathin nickel nanosheets supported on chainlike Ni-nanowires and the derivative chalcogenide for enhanced pseudocapacitance. Nanoscale 6, 2618 (2014).

    Article  CAS  Google Scholar 

  38. J.C. Xing, Y.L. Zhu, M.Y. Li, and Q.J. Jiao: Hierarchical mesoporous CoS2 microspheres: Morphology-controlled synthesis and their superior pseudocapacitive properties. Electrochim. Acta 149, 285 (2014).

    Article  CAS  Google Scholar 

  39. W. Zhou, X. Cao, Z. Zeng, W. Shi, Y. Zhu, Q. Yan, H. Liu, J. Wang, and H. Zhang: One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ. Sci. 6, 2216 (2013).

    Article  CAS  Google Scholar 

  40. J. Qi, Y. Chang, Y. Sui, Y. He, Q. Meng, F. Wei, Y. Ren, and Y. Jin: Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv. Mater. Interfaces 5, 1700985 (2018).

    Article  CAS  Google Scholar 

  41. J.Z. Kong, Y. Chen, Y.Q. Cao, Q.Z. Wang, A.D. Li, H. Li, and F. Zhou: Enhanced electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 coated by molecular layer deposition derived dual-functional C-Al2O3 composite coating. J. Alloys Compd. 799, 89 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Natural Science Foundation of China (51802150, 51721001, and 51571111) and Jiangsu Province (BK20161397 and BK20170645), a grant from the State Key Program for Basic Research of China (2015CB921203), and China Postdoctoral Science Foundation (2017M611778).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan-Qiang Cao or Ai-Dong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, JB., Liu, C., Cao, YQ. et al. Conformal porous carbon coating on carbon fiber cloth/NiS2 composites by molecular layer deposition for durable supercapacitor electrodes. Journal of Materials Research 35, 738–746 (2020). https://doi.org/10.1557/jmr.2019.359

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.359

Navigation