Skip to main content
Log in

Atomic layer deposition for nonconventional nanomaterials and their applications

  • Invited Feature Paper — Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Amorphous carbon, germanium oxide, and 2-dimensional transition metal dichalcogenides grown by atomic layer deposition (ALD) are considered as promising materials for advanced nanoscale device fabrication processes and electronic devices, owing to their extraordinary characteristics. Deposition of these materials using ALD can overcome the limitations of current deposition techniques, including poor step coverage and wafer-scale uniformity, and uncontrollable stoichiometry. Despite these advantages, there has been a lack of research into these materials due to the absence of suitable precursors or optimized processes. In this review, we focus on these nonconventional materials, which have rarely been studied using ALD. The latest research progress and future outlook on these materials grown by ALD will be highlighted, with a particular focus on the applications of future nanoscale device fabrication processes and new concepts in device fabrication which could lead to a paradigm shift in electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. R.L. Puurunen: A short history of atomic layer deposition: Tuomo Suntola’s atomic layer epitaxy. Chem. Vap. Deposition 20, 332–344 (2014).

    Article  CAS  Google Scholar 

  2. H. Kim, H.B.R. Lee, and W.J. Maeng: Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517, 2563–2580 (2009).

    Article  CAS  Google Scholar 

  3. X. Meng, X-Q. Yang, and X. Sun: Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 24, 3589–3615 (2012).

    Article  CAS  Google Scholar 

  4. S.A. Skoog, J.W. Elam, and R.J. Narayan: Atomic layer deposition: Medical and biological applications. Int. Mater. Rev. 58, 113–129 (2013).

    Article  CAS  Google Scholar 

  5. T. Singh, T. Lehnen, T. Leuning, and S. Mathur: Atomic layer deposition grown MOx thin films for solar water splitting: Prospects and challenges. J. Vac. Sci. Technol., A 33, 010801 (2015).

    Article  CAS  Google Scholar 

  6. S.M. George: Atomic layer deposition: An overview. Chem. Rev. 110, 111–131 (2010).

    Article  CAS  Google Scholar 

  7. J-S. Park, H. Chae, H.K. Chung, and S.I. Lee: Thin film encapsulation for flexible AM-OLED: A review. Semicond. Sci. Technol. 26, 034001 (2011).

    Article  CAS  Google Scholar 

  8. J. Lu, Y. Lei, and J.W. Elam: Atomic layer deposition of noble metals—New developments in nanostructured catalysts. In Noble Metals, ed. Y.-H. Su (InTech, London 2012); pp. 159–178.

    Google Scholar 

  9. H. Kim: Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 21, 2231–2261 (2003).

    Article  CAS  Google Scholar 

  10. C. Marichy, M. Bechelany, and N. Pinna: Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv. Mater. 24, 1017–1032 (2012).

    Article  CAS  Google Scholar 

  11. M. Leskelä and M. Ritala: Atomic layer deposition chemistry: Recent developments and future challenges. Angew. Chem., Int. Ed. 42, 5548–5554 (2003).

    Article  CAS  Google Scholar 

  12. T.O. Kääriäinen, M. Kemell, M. Vehkamäki, M.L. Kääriäinen, A. Correia, H.A. Santos, L.M. Bimbo, J. Hirvonen, P. Hoppu, S.M. George, D.C. Cameron, M. Ritala, and M. Leskelä: Surface modification of acetaminophen particles by atomic layer deposition. Int. J. Pharm. 525, 160–174 (2017).

    Article  CAS  Google Scholar 

  13. P. Poodt, D.C. Cameron, E. Dickey, S.M. George, V. Kuznetsov, G.N. Parsons, F. Roozeboom, G. Sundaram, and A. Vermeer: Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition. J. Vac. Sci. Technol., A 30, 010802 (2012).

    Article  CAS  Google Scholar 

  14. E. Alvaro and A. Yanguas-Gil: Characterizing the field of atomic layer deposition: Authors, topics, and collaborations. PLoS One 13, 1–19 (2018).

    Article  CAS  Google Scholar 

  15. W.J. Maeng, S-J. Park, and H. Kim: Atomic layer deposition of Ta-based thin films: Reactions of alkylamide precursor with various reactants. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 24, 2276 (2006).

    Article  CAS  Google Scholar 

  16. P.D. Ye, G.D. Wilk, J. Kwo, B. Yang, H.J.L. Gossmann, M. Frei, S.N.G. Chu, J.P. Mannaerts, M. Sergent, M. Hong, K.K. Ng, and J. Bude: GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition. IEEE Electron Device Lett. 24, 209–211 (2003).

    Article  CAS  Google Scholar 

  17. E.P. Gusev, C. Cabral, M. Copel, C. D’Emic, and M. Gribelyuk: Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications. Microelectron. Eng. 69, 145–151 (2003).

    Article  CAS  Google Scholar 

  18. T. Nam, C.W. Lee, T. Cheon, W.J. Lee, S-H. Kim, S-H. Kwon, H-B-R. Lee, and H. Kim: Cobalt titanium nitride amorphous metal alloys by atomic layer deposition. J. Alloys Compd. 737, 684–692 (2018).

    Article  CAS  Google Scholar 

  19. T.E. Hong, J.H. Jung, S. Yeo, T. Cheon, S.I. Bae, S.H. Kim, S.J. Yeo, H.S. Kim, T.M. Chung, B.K. Park, C.G. Kim, and D.J. Lee: Highly conformal amorphous W–Si–N thin films by plasma-enhanced atomic layer deposition as a diffusion barrier for Cu metallization. J. Phys. Chem. C 119, 1548–1556 (2015).

    Article  CAS  Google Scholar 

  20. H. Kim, C. Detavenier, O. Van Der Straten, S.M. Rossnagel, A.J. Kellock, and D.G. Park: Robust TaNx diffusion barrier for Cu-interconnect technology with subnanometer thickness by metal-organic plasma-enhanced atomic layer deposition. J. Appl. Phys. 98, 1–8 (2005).

    Google Scholar 

  21. D-J. Lee, H-M. Kim, J-Y. Kwon, H. Choi, S-H. Kim, and K-B. Kim: Structural and electrical properties of atomic layer deposited Al-doped ZnO films. Adv. Funct. Mater. 21, 448–455 (2010).

    Article  CAS  Google Scholar 

  22. T. Nam, C.W. Lee, H.J. Kim, and H. Kim: Growth characteristics and properties of Ga-doped ZnO (GZO) thin films grown by thermal and plasma-enhanced atomic layer deposition. Appl. Surf. Sci. 295, 260–265 (2014).

    Article  CAS  Google Scholar 

  23. N.P. Dasgupta, S. Neubert, W. Lee, O. Trejo, J.R. Lee, and F.B. Prinz: Atomic layer deposition of Al-doped ZnO films: Effect of grain orientation on conductivity. Chem. Mater. 22, 4769–4775 (2010).

    Article  CAS  Google Scholar 

  24. D. Kim, T. Nam, J. Park, J. Gatineau, and H. Kim: Growth characteristics and properties of indium oxide and indium-doped zinc oxide by atomic layer deposition. Thin Solid Films 587, 83–87 (2015).

    Article  CAS  Google Scholar 

  25. J. Lu, B. Liu, J.P. Greeley, Z. Feng, J.A. Libera, Y. Lei, M.J. Bedzyk, P.C. Stair, and J.W. Elam: Porous alumina protective coatings on palladium nanoparticles by self-poisoned atomic layer deposition. Chem. Mater. 24, 2047–2055 (2012).

    Article  CAS  Google Scholar 

  26. J. Lee, J. Yoon, H.G. Kim, S. Kang, W-S. Oh, H. Algadi, S. Al-Sayari, B. Shong, S-H. Kim, H. Kim, T. Lee, and H-B-R. Lee: Highly conductive and flexible fiber for textile electronics obtained by extremely low-temperature atomic layer deposition of Pt. NPG Asia Mater. 8, e331 (2016).

    Article  CAS  Google Scholar 

  27. Y.S. Jung, A.S. Cavanagh, L. Gedvilas, N.E. Widjonarko, I.D. Scott, S-H. Lee, G-H. Kim, S.M. George, and A.C. Dillon: Improved functionality of lithium-ion batteries enabled by atomic layer deposition on the porous microstructure of polymer separators and coating electrodes. Adv. Energy Mater. 2, 1022–1027 (2012).

    Article  CAS  Google Scholar 

  28. Z. Li, R.G. Gordon, D.B. Farmer, Y. Lin, and J. Vlassak: Nucleation and adhesion of ALD copper on cobalt adhesion layers and tungsten nitride diffusion barriers. Electrochem. Solid-State Lett. 8, G182 (2005).

    Article  CAS  Google Scholar 

  29. S.T. Christensen, H. Feng, J.L. Libera, N. Guo, J.T. Miller, P.C. Stair, and J.W. Elam: Supported Ru–Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. Nano Lett. 10, 3047–3051 (2010).

    Article  CAS  Google Scholar 

  30. S.I. Association: 2015 ITRS Section 5: More Moore (2015); pp. 1–52.

  31. H. Yaegashi, K. Oyama, A. Hara, S. Natori, and S. Yamauchi: Overview: Continuous evolution on double-patterning process. SPIE Adv. Lithogr. 8325, 83250B (2012).

    Article  CAS  Google Scholar 

  32. K. Kim, U-I. Chung, Y. Park, J. Lee, J. Yeo, and D. Kim: Extending the DRAM and FLASH memory technologies to 10 nm and beyond. Opt. Microlithogr. XXV 8326, 832605 (2012).

    Article  Google Scholar 

  33. S. Yamahata, N. Shigekawa, K. Kurishima, and Y. Matsuoka: High-speed carbon-doped-base InP/InGaAs hetero junction bipolar transistors grown by MOCVD. Electron. Lett. 31, 2128–2130 (1995).

    Article  Google Scholar 

  34. T. Choi, H. Jung, C.W. Lee, K.Y. Mun, S.H. Kim, J. Park, and H. Kim: Growth characteristics of graphene synthesized via chemical vapor deposition using carbon tetrabromide precursor. Appl. Surf. Sci. 343, 128–132 (2015).

    Article  CAS  Google Scholar 

  35. R. Ge, X. Wu, M. Kim, J. Shi, S. Sonde, L. Tao, Y. Zhang, J.C. Lee, and D. Akinwande: Atomristor: Nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2018).

    Article  CAS  Google Scholar 

  36. V.K. Sangwan, H.S. Lee, H. Bergeron, I. Balla, M.E. Beck, K.S. Chen, and M.C. Hersam: Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    Article  CAS  Google Scholar 

  37. H.E. Lee, J.H. Park, T.J. Kim, D. Im, J.H. Shin, D.H. Kim, B. Mohammad, I.S. Kang, and K.J. Lee: Novel electronics for flexible and neuromorphic computing. Adv. Funct. Mater. 28, 1–18 (2018).

    Google Scholar 

  38. A. Hirsch: The era of carbon allotropes. Nat. Mater. 9, 868–871 (2010).

    Article  CAS  Google Scholar 

  39. W.I. Milne and J. Robertson: Carbon, amorphous. In Encyclopedia of Materials: Science and Technology, eds. K.H.J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière (Elsevier, Netherlands, 2001); pp. 900–902.

    Chapter  Google Scholar 

  40. J. Robertson: Diamond-like amorphous carbon. Mater. Sci. Eng., R 37, 129–281 (2002).

    Article  Google Scholar 

  41. A. Geim and K. Novoselov: The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  42. W. Tillmann: Trends and market perspectives for diamond tools in the construction industry. Int. J. Refract. Met. Hard Mater. 18, 301–306 (2000).

    Article  CAS  Google Scholar 

  43. B. Mcenaney: Carbon materials for advanced technologies, Vol. 3 (Elsevier, Netherlands 1999).

  44. I. Electron and D. Society: Amorphous carbon films as planarization layers deposited by plasma-enhanced chemical vapor deposition. IEEE Electron Device Lett. 11, 391–393 (1990).

    Article  Google Scholar 

  45. W. Liu, D. Mui, T. Lill, M.D. Wang, C. Bencher, M. Kwan, W. Yeh, T. Ebihara, and T. Oga: Generating sub-30-nm polysilicon gates using PECVD amorphous carbon as hardmask and anti-reflective coating. Opt. Microlithogr. XVI 5040, 841 (2003).

    Article  CAS  Google Scholar 

  46. S.J. Park, K. Lee, S.H. Cho, S.H. Choi, S.I. Lee, J.O. Yoo, C.H. Shin, G.J. Min, C.J. Kang, H.K. Cho, and J.T. Moon: Hard carbon mask for next generation lithographic imaging. In 28th International Symposium on Dry Process (Nagoya University, Japan, 2006).

    Google Scholar 

  47. C. Wagner and N. Harned: EUV lithography: Lithography gets extreme. Nat. Photonics 4, 24–26 (2010).

    Article  CAS  Google Scholar 

  48. G. Tallents, E. Wagenaars, and G. Pert: Optical lithography: Lithography at EUV wavelengths. Nat. Photonics 4, 809–811 (2010).

    Article  CAS  Google Scholar 

  49. T.D. Horn, R.D. Annual, M. Le, C.E. Ngine, E.R. Conf, and E.R.E. Nce: Amorphous carbon hard mask for multiple patterning lithography. J. Microelectron. Eng., Conf. 21, 4–6 (2015).

    Google Scholar 

  50. C.Y. Ho, X.J. Lin, H.R. Chien, and C. Lien: High aspect ratio contact hole etching using relatively transparent amorphous carbon hard mask deposited from propylene. Thin Solid Films 518, 6076–6079 (2010).

    Article  CAS  Google Scholar 

  51. K.A. Pears: A new etching chemistry for carbon hard mask structures. Microelectron. Eng. 77, 255–262 (2005).

    Article  CAS  Google Scholar 

  52. M. Kakuchi, M. Hikita, and T. Tamamura: Amorphous carbon films as resist masks with high reactive ion etching resistance for nanometer lithography. Appl. Phys. Lett. 48, 835–837 (1986).

    Article  CAS  Google Scholar 

  53. Y. Chen, Q. Cheng, and W. Kang: Technological merits, process complexity, and cost analysis of self-aligned multiple patterning. Opt. Microlithogr. XXV. 8326, 832620 (2012).

    Article  CAS  Google Scholar 

  54. B. Bhushan: Chemical, mechanical and tribological characterization of ultra-thin and hard amorphous carbon coatings as thin as 3.5 nm: Recent developments. Diam. Relat. Mater. 8, 1985–2015 (1999).

    Article  CAS  Google Scholar 

  55. S.M. Rossnagel, A. Sherman, and F. Turner: Plasma-enhanced atomic layer deposition of Ta and Ti for interconnect diffusion barriers. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 18, 2016 (2000).

    Article  CAS  Google Scholar 

  56. H. Kim and S.M. Rossnagel: Growth kinetics and initial stage growth during plasma-enhanced Ti atomic layer deposition. J. Vac. Sci. Technol., A 20, 802 (2002).

    Article  CAS  Google Scholar 

  57. H.C.M. Knoops, S.E. Potts, A.A. Bol, W.M.M. Kessels: 27 — Atomic Layer Deposition. In Handbook of Crystal Growth, ed. T. F. Kuech (Elsevier, Netherlands, 1993); p. 1101–1134.

    Google Scholar 

  58. C.F. Matta, N. Castillo, and R.J. Boyd: Atomic contributions to bond dissociation energies in aliphatic hydrocarbons. J. Chem. Phys.125, 204103 (2006).

  59. J.V. Michael, K.P. Lim, S.S. Kumaran, and J.H. Kiefer: Thermal decomposition of carbon tetrachloride. J. Phys. Chem. 97, 1914–1919 (1993).

    Article  CAS  Google Scholar 

  60. Y.J. Kime, D.C. Driscoll, and P.A. Dowben: The stability of the carbon tetrahalide ions. J. Chem. Soc., Faraday Trans. 2 83, 403–410 (1987).

    Article  CAS  Google Scholar 

  61. S.J. Paddison and E. Tschuikow-Roux: Structures, vibrational frequencies, thermodynamic properties, and bond dissociation energies of the bromomethanes and bromomethyl radicals: An ab initio study. J. Phys. Chem. A 102, 6191–6199 (1998).

    Article  CAS  Google Scholar 

  62. B.E. Park, I.K. Oh, C.W. Lee, G. Lee, Y.H. Shin, C. Lansalot-Matras, W. Noh, H. Kim, and H.B.R. Lee: Effects of Cl-based ligand structures on atomic layer deposited HfO2. J. Phys. Chem. C 120, 5958–5967 (2016).

    Article  CAS  Google Scholar 

  63. T.I. Hukka, R.E. Rawles, and M.P. D’Evelyn: Novel method for chemical vapor deposition and atomic layer epitaxy using radical chemistry. Thin Solid Films 225, 212–218 (1993).

    Article  CAS  Google Scholar 

  64. S.F. Komarov, J.J. Lee, J.B. Hudson, and M.P. D’Evelyn: Self-limiting diamond growth from alternating CFx and H fluxes. Diam. Relat. Mater. 7, 1087–1094 (1998).

    Article  CAS  Google Scholar 

  65. T. Choi, S. Yeo, J.G. Song, S. Seo, B. Jang, S.H. Kim, and H. Kim: Hydrogen plasma-enhanced atomic layer deposition of hydrogenated amorphous carbon thin films. Surf. Coat. Technol. 344, 12–20 (2018).

    Article  CAS  Google Scholar 

  66. K. Tateno, Y. Kohama, and C. Amano: Carbon doping and etching effects of CBr4 during metalorganic chemical vapor deposition of GaAs and AlAs. J. Cryst. Growth 172, 5–12 (1997).

    Article  CAS  Google Scholar 

  67. T.J. De Lyon, N.I. Buchan, P.D. Kirchner, J.M. Woodall, G.J. Scilla, and F. Cardone: High carbon doping efficiency of bromomethanes in gas source molecular beam epitaxial growth of GaAs. Appl. Phys. Lett. 58, 517–519 (1991).

    Article  Google Scholar 

  68. X.J. Zhou, Q. Li, Z.H. He, X. Yang, and K.T. Leung: Dissociative adsorption and thermal desorption of dibromoethylene on Si(100)2 × 1: Surface mediated dehalogenation and recombinative evolution of HBr. Surf. Sci. 543, L668–L674 (2003).

    Article  CAS  Google Scholar 

  69. S.K. Kim, K.M. Kim, D.S. Jeong, W. Jeon, K.J. Yoon, and C.S. Hwang: Titanium dioxide thin films for next-generation memory devices. J. Mater. Res. 28, 313–325 (2013).

    Article  CAS  Google Scholar 

  70. R.P. Bell and S.H. Bauer: The proton in chemistry. J. Electrochem. Soc. 109, 117C–118C (1962).

    Article  Google Scholar 

  71. H-B-R. Lee and S.F. Bent: Microstructure-dependent nucleation in atomic layer deposition of Pt on TiO2. Chem. Mater. 24, 279–286 (2012). Available at: https://doi.org/10.1021/cm202764b (accessed January 4, 2015).

    Article  CAS  Google Scholar 

  72. J.J. Pyeon, C.J. Cho, S.H. Baek, C.Y. Kang, J.S. Kim, D.S. Jeong, and S.K. Kim: Control of the initial growth in atomic layer deposition of Pt films by surface pretreatment. Nanotechnology 26, 304003 (2015).

    Article  CAS  Google Scholar 

  73. M. Popovici, B. Groven, K. Marcoen, Q.M. Phung, S. Dutta, J. Swerts, J. Meersschaut, J.A. Van Den Berg, A. Franquet, A. Moussa, K. Vanstreels, P. Lagrain, H. Bender, M. Jurczak, S. Van Elshocht, A. Delabie, and C. Adelmann: Atomic layer deposition of ruthenium thin films from (ethylbenzyl) (1-ethyl-1,4-cyclohexadienyl) Ru: Process characteristics, surface chemistry, and film properties. Chem. Mater. 29, 4654–4666 (2017).

    Article  CAS  Google Scholar 

  74. L. Baker, A.S. Cavanagh, D. Seghete, S.M. George, A.J.M. MacKus, W.M.M. Kessels, Z.Y. Liu, and F.T. Wagner: Nucleation and growth of Pt atomic layer deposition on Al2O3 substrates using (methylcyclopentadienyl)-trimethyl platinum and O2 plasma. J. Appl. Phys. 109, 084333 (2011).

    Article  CAS  Google Scholar 

  75. J. Dendooven, R.K. Ramachandran, K. Devloo-Casier, G. Rampelberg, M. Filez, H. Poelman, G.B. Marin, E. Fonda, and C. Detavernier: Low-temperature atomic layer deposition of platinum using (methylcyclopentadienyl)trimethylplatinum and ozone. J. Phys. Chem. C 117, 20557–20561 (2013).

    Article  CAS  Google Scholar 

  76. H-B-R. Lee, S.H. Baeck, T.F. Jaramillo, and S.F. Bent: Growth of Pt nanowires by atomic layer deposition on highly ordered pyrolytic graphite. Nano Lett. 13, 457–463 (2013).

    Article  CAS  Google Scholar 

  77. H-B-R. Lee, M.N. Mullings, X. Jiang, B.M. Clemens, and S.F. Bent: Nucleation-controlled growth of nanoparticles by atomic layer deposition. Chem. Mater. 24, 4051–4059 (2012).

    Article  CAS  Google Scholar 

  78. L. Baker, A.S. Cavanagh, J. Yin, S.M. George, A. Kongkanand, and F.T. Wagner: Growth of continuous and ultrathin platinum films on tungsten adhesion layers using atomic layer deposition techniques. Appl. Phys. Lett. 101, 111601 (2012).

    Article  CAS  Google Scholar 

  79. C.T. Campbell: Ultrathin metal films and particles on oxide surfaces: Structural, electronic and chemisorptive properties. Surf. Sci. Rep. 27, 1–111 (1997).

    Article  CAS  Google Scholar 

  80. J. Heo, S.J. Won, D. Eom, S.Y. Lee, Y.B. Ahn, C.S. Hwang, and H.J. Kim: The role of the methyl and hydroxyl groups of low-k dielectric films on the nucleation of ruthenium by ALD. Electrochem. Solid-State Lett. 11, 210–213 (2008).

    Article  CAS  Google Scholar 

  81. C. Liu, C.C. Wang, C.C. Kei, Y.C. Hsueh, and T.P. Perng: Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells. Small 5, 1535–1538 (2009).

    Article  CAS  Google Scholar 

  82. Y.C. Hsueh, C. Te Hu, C.C. Wang, C. Liu, and T.P. Perng: Deposition of Pt nanoparticles on oxygen plasma treated carbon nanotubes by atomic layer deposition. ECS Trans. 16, 855–862 (2008).

    Article  CAS  Google Scholar 

  83. P. K. Chu and L. Li: Characterization of amorphous and nanocrystalline carbon films. Mater. Chem. Phys. 96, 253–277 (2006).

  84. R.U.R. Sagar, X. Zhang, C. Xiong, and Y. Yu: Semiconducting amorphous carbon thin films for transparent conducting electrodes. Carbon 76, 64–70 (2014).

    Article  CAS  Google Scholar 

  85. R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, and J. Jamnik: Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J. Electrochem. Soc. 152, 607–610 (2005).

    Article  CAS  Google Scholar 

  86. I.D. Scott, Y.S. Jung, A.S. Cavanagh, Y. Yan, A.C. Dillon, S.M. George, and S.H. Lee: Ultrathin coatings on nano-LiCoO2 for Li-ion vehicular applications. Nano Lett. 11, 414–418 (2011).

    Article  CAS  Google Scholar 

  87. X. Zhu, X. Yang, C. Lv, S. Guo, J. Li, Z. Zheng, H. Zhu, and D. Yang: New approach to create TiO2(B)/carbon core/shell nanotubes: Ideal structure for enhanced lithium ion storage. ACS Appl. Mater. Interfaces 8, 18815–18821 (2016).

    Article  CAS  Google Scholar 

  88. P.S. Goley and M.K. Hudait: Germanium based field-effect transistors: Challenges and opportunities. Materials 7, 2301–2339 (2014).

    Article  CAS  Google Scholar 

  89. S.H. Shin, H. Jiang, W. Ahn, H. Wu, W. Chung, P.D. Ye, and M.A. Alam: Performance potential of Ge CMOS technology from a material-device-circuit perspective. IEEE Trans. Electron Devices 65, 1679–1684 (2018).

    Article  CAS  Google Scholar 

  90. Y. Kamata: High-k/Ge MOSFETs for future nanoelectronics. Mater. Today 11, 30–38 (2008).

    Article  Google Scholar 

  91. D. Bodlaki, H. Yamamoto, D.H. Waldeck, and E. Borguet: Ambient stability of chemically passivated germanium interfaces. Surf. Sci. 543, 63–74 (2003).

    Article  CAS  Google Scholar 

  92. Q. Xie, S. Deng, M. Schaekers, D. Lin, M. Caymax, A. Delabie, X.P. Qu, Y.L. Jiang, D. Deduytsche, and C. Detavernier: Germanium surface passivation and atomic layer deposition of high-k dielectrics—A tutorial review on Ge-based MOS capacitors. Semicond. Sci. Technol. 27, 074012 (2012).

    Article  CAS  Google Scholar 

  93. I.K. Oh, K. Kim, Z. Lee, J.G. Song, C.W. Lee, D. Thompson, H.B.R. Lee, W.H. Kim, W.J. Maeng, and H. Kim: In situ surface cleaning on a Ge substrate using TMA and MgCp2 for HfO2-based gate oxides. J. Mater. Chem. C 3, 4852–4858 (2015).

    Article  CAS  Google Scholar 

  94. M. Kanematsu, S. Shibayama, M. Sakashita, W. Takeuchi, O. Nakatsuka, and S. Zaima: Effect of GeO2 deposition temperature in atomic layer deposition on electrical properties of Ge gate stack. Jpn. J. Appl. Phys. 55, 1–6 (2016).

    Article  CAS  Google Scholar 

  95. A. Molle, S. Spiga, and M. Fanciulli: Stability and interface quality of GeO2 films grown on Ge by atomic oxygen assisted deposition. J. Chem. Phys. 129, 1–5 (2008).

    Article  CAS  Google Scholar 

  96. S. Takagi, T. Maeda, N. Taoka, M. Nishizawa, Y. Morita, K. Ikeda, Y. Yamashita, M. Nishikawa, H. Kumagai, R. Nakane, S. Sugahara, and N. Sugiyama: Gate dielectric formation and MIS interface characterization on Ge. Microelectron. Eng. 84, 2314–2319 (2007).

    Article  CAS  Google Scholar 

  97. N. Greenwood and A. Earnshaw: Chemistry of the Elements (Butterworth-Heinemann, 1997).

    Google Scholar 

  98. S. Shibayama, T. Yoshida, K. Kato, M. Sakashita, W. Takeuchi, N. Taoka, O. Nakatsuka, and S. Zaima: Formation of chemically stable GeO2 on the Ge surface with pulsed metal-organic chemical vapor deposition. Appl. Phys. Lett. 106, 1–5 (2015).

    Article  CAS  Google Scholar 

  99. F. Bellenger, B. De Jaeger, C. Merckling, M. Houssa, J. Penaud, L. Nyns, E. Vrancken, M. Caymax, M. Meuris, T. Hoffmann, K. De Meyer, and M. Heyns: High FET performance for a future CMOS GeO2-based technology. IEEE Electron Device Lett. 31, 402–404 (2010).

    Article  CAS  Google Scholar 

  100. Y. Seo, T.I. Lee, C.M. Yoon, B.E. Park, W.S. Hwang, H. Kim, H.Y. Yu, and B.J. Cho: The impact of an ultrathin Y2O3 layer on GeO2 passivation in Ge MOS gate stacks. IEEE Trans. Electron Devices 64, 3303–3307 (2017).

    Article  CAS  Google Scholar 

  101. T. Busani, H. Plantier, R.A.B. Devine, C. Hernandez, and Y. Campidelli: Growth and characterization of GeO2 films obtained by plasma anodization of epitaxial Ge films. J. Appl. Phys. 85, 4262–4264 (1999).

    Article  CAS  Google Scholar 

  102. K. Kita, C.H. Lee, T. Nishimura, K. Nagashio, and A. Toriumi: Control of properties of GeO2 films and Ge/GeO2 interfaces by the suppression of GeO volatilization. ECS Trans. 19, 101–116 (2009).

    Article  CAS  Google Scholar 

  103. H. Weis, M. Beckers, M. Wuttig, T. Lange, and W. Njoroge: Physical properties of thin GeO2 films produced by reactive DC magnetron sputtering. Thin Solid Films 365, 82–89 (2000).

    Article  Google Scholar 

  104. N.R. Murphy, J.T. Grant, L. Sun, J.G. Jones, R. Jakubiak, V. Shutthanandan, and C.V. Ramana: Correlation between optical properties and chemical composition of sputter-deposited germanium oxide (GeOx) films. Opt. Mater. 36, 1177–1182 (2014).

    Article  CAS  Google Scholar 

  105. M. Perego, G. Scarel, M. Fanciulli, I.L. Fedushkin, and A.A. Skatova: Fabrication of GeO2 layers using a divalent Ge precursor. Appl. Phys. Lett. 90, 1–4 (2007).

    Article  CAS  Google Scholar 

  106. J.S. Jung, D.H. Kim, J.H. Shin, and J.G. Kang: Atomic layer deposition of GeO2 thin films on Si(100) using Ge(N, N′-R,R-en)(NMe2)2 (where R = isopropyl and t-butyl) precursors. Bull. Korean Chem. Soc. 36, 1953–1954 (2015).

    Article  CAS  Google Scholar 

  107. S. Kar: High Permittivity Gate Dielectric Materials, 1st ed. (Springer-Verlag, Berlin, Heidelberg, 2013).

    Book  Google Scholar 

  108. A. Ohta, H. Nakagawa, H. Murakami, S. Higashi, and S. Miyazaki: Photoemission study of ultrathin GeO2/Ge heterostructures formed by UV-O3 oxidation. e-J. Surf. Sci. Nanotechnol. 4, 174–179 (2006).

    Article  CAS  Google Scholar 

  109. C.L. Dezelah IV, O.M. El-Kadri, K. Kukli, K. Arstila, R.J. Baird, J. Lu, L. Niinistö, and C.H. Winter: A low valent metalorganic precursor for the growth of tungsten nitride thin films by atomic layer deposition. J. Mater. Chem. 17, 1109–1116 (2007).

    Article  CAS  Google Scholar 

  110. C.L. Dezelah IV, O.M. El-Kadri, I.M. Szilágyi, J.M. Campbell, K. Arstila, L. Niinistö, and C.H. Winter: Atomic layer deposition of tungsten(III) oxide thin films from W2(NMe2)6 and water: Precursor-based control of oxidation state in the thin film material. J. Am. Chem. Soc. 128, 9638–9639 (2006).

    Article  CAS  Google Scholar 

  111. C.M. Yoon, I.K. Oh, Y. Lee, J.G. Song, S.J. Lee, J.M. Myoung, H.G. Kim, H.S. Moon, B. Shong, H.B.R. Lee, and H. Kim: Water-erasable memory device for security applications prepared by the atomic layer deposition of GeO2. Chem. Mater. 30, 830–840 (2018).

    Article  CAS  Google Scholar 

  112. J.S. Kachian, K.T. Wong, and S.F. Bent: Periodic trends in organic functionalization of group IV semiconductor surfaces. Acc. Chem. Res. 43, 346–355 (2010).

    Article  CAS  Google Scholar 

  113. Y. Oniki, H. Koumo, Y. Iwazaki, and T. Ueno: Evaluation of GeO desorption behavior in the metal/GeO2/Ge structure and its improvement of the electrical characteristics. J. Appl. Phys. 107, 124113 (2010).

    Article  CAS  Google Scholar 

  114. S.N.A. Murad, P.T. Baine, D.W. McNeill, S.J.N. Mitchell, B.M. Armstrong, M. Modreanu, G. Hughes, and R.K. Chellappan: Optimisation and scaling of interfacial GeO2 layers for high-k gate stacks on germanium and extraction of dielectric constant of GeO2. Solid State Electron. 78, 136–140 (2012).

    Article  CAS  Google Scholar 

  115. A.A.F. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, and I.V. Grigorieva: Electric field effect in atomically thin carbon films. Science 666, 666–669 (2013).

    Google Scholar 

  116. K.I. Bolotin: Electronic transport in graphene: Towards high mobility. In Graphene, eds. V. Skákalová and A. B. Kaiser (Woodhead Publishing, Cambridge, 2014); pp. 199–227.

    Chapter  Google Scholar 

  117. S. Manzeli, D. Ovchinnikov, D. Pasquier, O.V. Yazyev, and A. Kis: 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  118. M. Chhowalla, H.S. Shin, G. Eda, L-J. Li, K.P. Loh, and H. Zhang: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  119. P.C. Yeh, W. Jin, N. Zaki, D. Zhang, J.T. Liou, J.T. Sadowski, A. Al-Mahboob, J.I. Dadap, I.P. Herman, P. Sutter, and R.M. Osgood: Layer-dependent electronic structure of an atomically heavy two-dimensional dichalcogenide. Phys. Rev. B: Condens. Matter Mater. Phys. 91, 1–6 (2015).

    Article  CAS  Google Scholar 

  120. H. Li, J. Wu, Z. Yin, and H. Zhang: Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc. Chem. Res. 47, 1067–1075 (2014).

    Article  CAS  Google Scholar 

  121. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 2–5 (2010).

    Article  CAS  Google Scholar 

  122. C. Tan and H. Zhang: Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44, 2713–2731 (2015).

    Article  CAS  Google Scholar 

  123. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  124. K.F. Mak and J. Shan: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216–226 (2016).

    Article  CAS  Google Scholar 

  125. V.W. Brar, M.C. Sherrott, and D. Jariwala: Emerging photonic architectures in two-dimensional opto-electronics. Chem. Soc. Rev. 47, 6824–6844 (2018).

    Article  CAS  Google Scholar 

  126. K. Kaasbjerg, K.S. Thygesen, and K.W. Jacobsen: Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 1–16 (2012).

    Google Scholar 

  127. M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, and R.J. Cava: Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    Article  CAS  Google Scholar 

  128. C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K.S. Novoselov: Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 87, 1–5 (2013).

    Google Scholar 

  129. X. Xu, W. Yao, D. Xiao, and T.F. Heinz: Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  130. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla: Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  Google Scholar 

  131. A.V. Kolobov and J. Tominaga: Two-Dimensional Transition-Metal Dichalcogenides (Springer, 2016).

    Book  Google Scholar 

  132. J. Sun, X. Li, W. Guo, M. Zhao, X. Fan, Y. Dong, C. Xu, J. Deng, and Y. Fu: Synthesis methods of two-dimensional MoS2: A brief review. Crystals 7, 18–37 (2017).

    Article  CAS  Google Scholar 

  133. S. Najmaei, Z. Liu, W. Zhou, X. Zou, G. Shi, S. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, and J. Lou: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12, 754–759 (2013).

    Article  CAS  Google Scholar 

  134. J.G. Song, J. Park, W. Lee, T. Choi, H. Jung, C.W. Lee, S.H. Hwang, J.M. Myoung, J.H. Jung, S.H. Kim, C. Lansalot-Matras, and H. Kim: Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition. ACS Nano 7, 11333–11340 (2013).

    Article  CAS  Google Scholar 

  135. D. Ovchinnikov, A. Allain, Y.S. Huang, D. Dumcenco, and A. Kis: Electrical transport properties of single-layer WS2. ACS Nano 8, 8174–8181 (2014).

    Article  CAS  Google Scholar 

  136. A. Chernikov, A.M. Van Der Zande, H.M. Hill, A.F. Rigosi, A. Velauthapillai, J. Hone, and T.F. Heinz: Electrical tuning of exciton binding energies in monolayer WS2. Phys. Rev. Lett. 115, 1–6 (2015).

    Article  CAS  Google Scholar 

  137. H.C. Kim, H. Kim, J.U. Lee, H.B. Lee, D.H. Choi, J.H. Lee, W.H. Lee, S.H. Jhang, B.H. Park, H. Cheong, S.W. Lee, and H.J. Chung: Engineering optical and electronic properties of WS2 by varying the number of layers. ACS Nano 9, 6854–6860 (2015).

    Article  CAS  Google Scholar 

  138. C. Cong, J. Shang, Y. Wang, and T. Yu: Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 6, 1–15 (2018).

    Article  CAS  Google Scholar 

  139. Y. Kajino, K. Oto, and Y. Yamada: Modification of optical properties in monolayer WS2 on dielectric substrates by coulomb engineering. J. Phys. Chem. C 123, 14097–14102 (2019).

    Article  CAS  Google Scholar 

  140. G. Plechinger, P. Nagler, A. Arora, A. Granados Del Águila, M.V. Ballottin, T. Frank, P. Steinleitner, M. Gmitra, J. Fabian, P.C.M. Christianen, R. Bratschitsch, C. Schüller, and T. Korn: Excitonic valley effects in monolayer WS2 under high magnetic fields. Nano Lett. 16, 7899–7904 (2016).

    Article  CAS  Google Scholar 

  141. Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, and B. Huang: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2, and WS2 monolayers. Phys. Chem. Chem. Phys. 13, 15546–15553 (2011).

    Article  CAS  Google Scholar 

  142. J. Duan, S. Chen, B.A. Chambers, G.G. Andersson, and S.Z. Qiao: 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 27, 4234–4241 (2015).

    Article  CAS  Google Scholar 

  143. M.A. Lukowski, A.S. Daniel, C.R. English, F. Meng, A. Forticaux, R.J. Hamers, and S. Jin: Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ. Sci. 7, 2608–2613 (2014).

    Article  CAS  Google Scholar 

  144. H.R. Gutiérrez, N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, and M. Terrones: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447–3454 (2013).

    Article  CAS  Google Scholar 

  145. A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.I. Chia, B. Wang, V.H. Crespi, F. López-Urías, J.C. Charlier, H. Terrones, and M. Terrones: Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1–8 (2013).

    Article  CAS  Google Scholar 

  146. A. Molina-Sánchez and L. Wirtz: Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 1–8 (2011).

    Article  CAS  Google Scholar 

  147. Y.H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C. Te Lin, J.K. Huang, M.T. Chang, C.S. Chang, M. Dresselhaus, T. Palacios, L.J. Li, and J. Kong: Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013).

    Article  CAS  Google Scholar 

  148. Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, and J. Lou: Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).

    Article  CAS  Google Scholar 

  149. F. Chen, J. Xia, D.K. Ferry, and N. Tao: Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009).

    Article  CAS  Google Scholar 

  150. D. Jena and A. Konar: Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98, 1–4 (2007).

    Article  CAS  Google Scholar 

  151. D. Lembke and A. Kis: Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 6, 10070–10075 (2012).

    Article  CAS  Google Scholar 

  152. Y. Zongyou, L. Hai, L. Hong, J. Lin, S. Yumeng, S. Yinghui, L. Gang, Z. Qing, C. Xiaodong, and Z. Hua: Single-layer MoS2 phototransistors. ACS Nano 6, 74–80 (2012). Available at: https://doi.org/10.1021/nn2024557 (accessed May 20, 2014).

    Article  Google Scholar 

  153. J.G. Song, G.H. Ryu, S.J. Lee, S. Sim, C.W. Lee, T. Choi, H. Jung, Y. Kim, Z. Lee, J.M. Myoung, C. Dussarrat, C. Lansalot-Matras, J. Park, H. Choi, and H. Kim: Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat. Commun. 6, 1–10 (2015).

    Google Scholar 

  154. P.E. Blackburn, M. Hoch, and H.L. Johnston: The vaporization of molybdenum and tungsten oxides. J. Phys. Chem. 62, 769–773 (1958).

    Article  CAS  Google Scholar 

  155. B.D. Keller, A. Bertuch, J. Provine, G. Sundaram, N. Ferralis, and J.C. Grossman: Process control of atomic layer deposition molybdenum oxide nucleation and sulfidation to large-area MoS2 monolayers. Chem. Mater. 29, 2024–2032 (2017).

    Article  CAS  Google Scholar 

  156. M. Bernardi, M. Palummo, and J.C. Grossman: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013).

    Article  CAS  Google Scholar 

  157. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  158. A. Kutana, E.S. Penev, and B.I. Yakobson: Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 6, 5820–5825 (2014).

    Article  CAS  Google Scholar 

  159. S. Susarla, A. Kutana, J.A. Hachtel, V. Kochat, A. Apte, R. Vajtai, J.C. Idrobo, B.I. Yakobson, C.S. Tiwary, and P.M. Ajayan: Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater. 29, 1–8 (2017).

    Google Scholar 

  160. J.R. Bakke, J.T. Tanskanen, H.J. Jung, R. Sinclair, and S.F. Bent: Atomic layer deposition of CdxZn1−xS films. J. Mater. Chem. 21, 743–751 (2011).

    Article  CAS  Google Scholar 

  161. P. Banerjee, W.J. Lee, K.R. Bae, S.B. Lee, and G.W. Rubloff: Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films. J. Appl. Phys. 108, 043504 (2010).

    Article  CAS  Google Scholar 

  162. C. Adelmann, H. Tielens, D. Dewulf, A. Hardy, D. Pierreux, J. Swerts, E. Rosseel, X. Shi, M.K. Van Bael, J.A. Kittl, and S. Van Elshocht: Atomic layer deposition of Gd-doped HfO2 thin films. J. Electrochem. Soc. 157, 105–110 (2010).

    Article  CAS  Google Scholar 

  163. E. Thimsen, S.C. Riha, S.V. Baryshev, A.B.F. Martinson, J.W. Elam, and M.J. Pellin: Atomic layer deposition of the quaternary chalcogenide Cu2 ZnSnS4. Chem. Mater. 24, 3188–3196 (2012).

    Article  CAS  Google Scholar 

  164. E. Ahvenniemi, M. Matvejeff, and M. Karppinen: Atomic layer deposition of quaternary oxide (La, Sr)CoO3−δ thin films. Dalton Trans. 44, 8001–8006 (2015).

    Article  CAS  Google Scholar 

  165. W.J. Yin, X.G. Gong, and S.H. Wei: Origin of the unusually large band-gap bowing and the breakdown of the band-edge distribution rule in the SnxGe1−x alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 78, 1–4 (2008).

    Article  CAS  Google Scholar 

  166. Y. Chen, J. Xi, D.O. Dumcenco, Z. Liu, K. Suenaga, D. Wang, Z. Shuai, Y.S. Huang, and L. Xie: Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 7, 4610–4616 (2013).

    Article  CAS  Google Scholar 

  167. X. Hong, J. Kim, S.F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, and F. Wang: Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    Article  CAS  Google Scholar 

  168. K. Koåmider and J. Fernández-Rossier: Electronic properties of the MoS2–WS2 heterojunction. Phys. Rev. B: Condens. Matter Mater. Phys. 87, 2–5 (2013).

    Google Scholar 

  169. S. Tongay, W. Fan, J. Kang, J. Park, U. Koldemir, J. Suh, D.S. Narang, K. Liu, J. Ji, J. Li, R. Sinclair, and J. Wu: Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. Nano Lett. 14, 3185–3190 (2014).

    Article  CAS  Google Scholar 

  170. Y. Yu, S. Hu, L. Su, L. Huang, Y. Liu, Z. Jin, A.A. Purezky, D.B. Geohegan, K.W. Kim, Y. Zhang, and L. Cao: Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Lett. 15, 486–491 (2015).

    Article  CAS  Google Scholar 

  171. Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, and P.M. Ajayan: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  CAS  Google Scholar 

  172. Z. Lin, Y. Zhao, C. Zhou, R. Zhong, X. Wang, Y.H. Tsang, and Y. Chai: Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 5, 1–10 (2015).

    Google Scholar 

  173. L.K. Tan, B. Liu, J.H. Teng, S. Guo, H.Y. Low, and K.P. Loh: Atomic layer deposition of a MoS2 film. Nanoscale 6, 10584–10588 (2014).

    Article  CAS  Google Scholar 

  174. T. Jurca, M.J. Moody, A. Henning, J.D. Emery, B. Wang, J.M. Tan, T.L. Lohr, L.J. Lauhon, and T.J. Marks: Low-temperature atomic layer deposition of MoS2 films. Angew. Chem., Int. Ed. 56, 4991–4995 (2017).

    Article  CAS  Google Scholar 

  175. D.K. Nandi, S. Sahoo, S. Sinha, S. Yeo, H. Kim, R.N. Bulakhe, J. Heo, J.J. Shim, and S.H. Kim: Highly uniform atomic layer-deposited MoS2@3D-Ni-foam: A novel approach to prepare an electrode for supercapacitors. ACS Appl. Mater. Interfaces 9, 40252–40264 (2017).

    Article  CAS  Google Scholar 

  176. M. Mattinen, T. Hatanpää, T. Sarnet, K. Mizohata, K. Meinander, P.J. King, L. Khriachtchev, J. Räisänen, M. Ritala, and M. Leskelä: Atomic layer deposition of crystalline MoS2 thin films: New molybdenum precursor for low-temperature film growth. Adv. Mater. Interfaces 4, 1–11 (2017).

    Article  CAS  Google Scholar 

  177. J.J. Pyeon, S.H. Kim, D.S. Jeong, S.H. Baek, C.Y. Kang, J.S. Kim, and S.K. Kim: Wafer-scale growth of MoS2 thin films by atomic layer deposition. Nanoscale 8, 10792–10798 (2016).

    Article  CAS  Google Scholar 

  178. Z. Jin, S. Shin, D.H. Kwon, S.J. Han, and Y.S. Min: Novel chemical route for atomic layer deposition of MoS2 thin film on SiO2/Si substrate. Nanoscale 6, 14453–14458 (2014).

    Article  CAS  Google Scholar 

  179. Y. Kim, J.G. Song, Y.J. Park, G.H. Ryu, S.J. Lee, J.S. Kim, P.J. Jeon, C.W. Lee, W.J. Woo, T. Choi, H. Jung, H.B.R. Lee, J.M. Myoung, S. Im, Z. Lee, J.H. Ahn, J. Park, and H. Kim: Self-limiting layer synthesis of transition metal dichalcogenides. Sci. Rep. 6, 1–8 (2016).

    Article  CAS  Google Scholar 

  180. K. Park, Y. Kim, J.G. Song, S.J. Kim, C. Wanlee, G.H. Ryu, Z. Lee, J. Park, and H. Kim: Uniform, large-area self-limiting layer synthesis of tungsten diselenide. 2D Mater. 3, 014004 (2016).

    Article  CAS  Google Scholar 

  181. S. McDonnell, B. Brennan, A. Azcatl, N. Lu, H. Dong, C. Buie, J. Kim, C.L. Hinkle, M.J. Kim, and R.M. Wallace: HfO2 on MoS2 by atomic layer deposition: Adsorption mechanisms and thickness scalability. ACS Nano 7, 10354–10361 (2013).

    Article  CAS  Google Scholar 

  182. S.J. McDonnell and R.M. Wallace: UV-ozone functionalization of 2D materials. Jom 71, 224–237 (2019).

    Article  CAS  Google Scholar 

  183. A. Castellanos-Gomez, E. Cappelluti, R. Roldán, N. Agraït, F. Guinea, and G. Rubio-Bollinger: Electric-field screening in atomically thin layers of MoS2: The role of interlayer coupling. Adv. Mater. 25, 899–903 (2013).

    Article  CAS  Google Scholar 

  184. J. Huang, L. Yang, D. Liu, J. Chen, Q. Fu, Y. Xiong, F. Lin, and B. Xiang: Large-area synthesis of monolayer WSe2 on a SiO2/Si substrate and its device applications. Nanoscale 7, 4193–4198 (2015).

    Article  CAS  Google Scholar 

  185. R. Dong and I. Kuljanishvili: Review article: Progress in fabrication of transition metal dichalcogenides heterostructure systems. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 35, 030803 (2017).

    Google Scholar 

  186. M.M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer, and T. Mueller: Photovoltaic effect in an electrically tunable Van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    Article  CAS  Google Scholar 

  187. C.H. Lee, G.H. Lee, A.M. Van Der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, J. Guo, J. Hone, and P. Kim: Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Article  CAS  Google Scholar 

  188. H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J.S. Kang, H.A. Bechtel, S.B. Desai, F. Kronast, A.A. Unal, G. Conti, C. Conlon, G.K. Palsson, M.C. Martin, A.M. Minor, C.S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey: Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. U. S. A. 111, 6198–6202 (2014).

    Article  CAS  Google Scholar 

  189. Y. Kim, D. Choi, W.J. Woo, J.B. Lee, G.H. Ryu, J.H. Lim, S. Lee, Z. Lee, S. Im, J-H. Ahn, W-H. Kim, J. Park, and H. Kim: Synthesis of two-dimensional MoS2/graphene heterostructure by atomic layer deposition using MoF6 precursor. Appl. Surf. Sci. 494, 591–599 (2019).

    Article  CAS  Google Scholar 

  190. L. Zhan, W. Wan, Z. Zhu, Y. Xu, T.M. Shih, C. Zhang, W. Lin, X. Li, Z. Zhao, H. Ying, Q. Yao, Y. Zheng, Z. Zhu, and W. Cai: Centimeter-scale nearly single-crystal monolayer MoS2 via self-limiting vapor deposition epitaxy. J. Phys. Chem. C 121, 4703–4707 (2017).

    Article  CAS  Google Scholar 

  191. K. Kim, H.B.R. Lee, R.W. Johnson, J.T. Tanskanen, N. Liu, M.G. Kim, C. Pang, C. Ahn, S.F. Bent, and Z. Bao: Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Commun. 5, 1–9 (2014).

    Google Scholar 

  192. K.Y. Ko, S. Lee, K. Park, Y. Kim, W.J. Woo, D. Kim, J.G. Song, J. Park, J.H. Kim, Z. Lee, and H. Kim: High-performance gas sensor using a large-area WS2xSe2−2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces 10, 34163–34171 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Materials and Components Technology Development Program of MOTIE/KEIT [10080527, Development of commercialization technology of highly sensitive gas sensor based on chalcogenide 2D nanomaterial], by the Commercialization Promotion Agency for R&D Outcomes (COMPA) funded by the Ministry of Science and ICT (MSIT) [Development of Plasma-based Synthesis Equipment and Process for Two-Dimensional TMDCs], and by the Technology Transfer and Commercialization Program through INNOPOLIS Foundation funded by the Ministry of Science and ICT (2019-GJ-RD-0072/Equipment and Process Development of Large scaled 2D Nanomaterial Synthesis).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungjun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, T., Kim, H. Atomic layer deposition for nonconventional nanomaterials and their applications. Journal of Materials Research 35, 656–680 (2020). https://doi.org/10.1557/jmr.2019.347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.347

Navigation