Skip to main content
Log in

Atomic layer deposition of zirconium oxide thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, we studied an atomic layer deposition (ALD) process of ZrO2 with the precursors of tetrakis(dimethylamido)zirconium(IV) and water. We investigated the growth characteristics and mechanism of the ALD ZrO2 in the temperature range of 50–275 °C. Furthermore, the evolutions of film thickness and morphology were studied and discussed. It was found that the growth rate of ZrO2 decreased almost linearly with the increasing temperature from ∼1.81 Å/cycle at 50 °C to ∼0.8 Å/cycle at 225 °C. Interestingly, it was revealed that the growth of ZrO2 films ceased after a certain number of ALD cycles at a temperature higher than 250 °C. We also verified that the crystallinity of ZrO2 evolved with deposition temperature from amorphous to crystalline phase. In addition, the wettability of ZrO2 films was studied, showing a hydrophobic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. J. Lu, J.B. Zang, S.X. Shan, H. Huang, and Y.H. Wang: Synthesis and characterization of core–shell structural MWNT–zirconia nanocomposites. Nano Lett. 8, 4070 (2008).

    Article  CAS  Google Scholar 

  2. T. Luo, T. Liang, and C. Li: Stabilization of cubic zirconia by carbon nanotubes. Mater. Sci. Eng. A 366, 206 (2004).

    Article  Google Scholar 

  3. J. Nawrocki, M. Rigney, A. McCormick, and P.W. Carr: Chemistry of zirconia and its use in chromatography. J. Chromatogr. A 657, 229 (1993).

    Article  CAS  Google Scholar 

  4. K. Asakura, M. Aoki, and Y. Iwasawa: Selective isopentane formation from CH3OH on a new one-atomic layer ZrO2/ZSM-5 hybrid catalyst. Catal. Lett. 1, 395 (1988).

    Article  CAS  Google Scholar 

  5. I. Molodetsky, A. Navrotsky, M.J. Paskowitz, V.J. Leppert, and S.H. Risbud: Energetics of X-ray-amorphous zirconia and the role of surface energy in its formation. J. Non-Cryst. Solids 262, 106 (2000).

    Article  CAS  Google Scholar 

  6. G. Reiße, B. Keiper, S. Weißmantel, H. Johansen, R. Scholz, and T. Martini: Properties of laser pulse deposited oxide films. Thin Solid Films 241, 119 (1994).

    Article  Google Scholar 

  7. A.K. Jonsson, G.A. Niklasson, and M. Veszelei: Electrical properties of ZrO2 thin films. Thin Solid Films 402, 242 (2002).

    Article  CAS  Google Scholar 

  8. R.N. Tauber, A.C. Dumbri, and R.E. Caffrey: Preparation and properties of pyrolytic zirconium dioxide films. J. Electrochem. Soc. 118, 747 (1971).

    Article  CAS  Google Scholar 

  9. T.S. Jeon, J.M. White, and D.L. Kwong: Thermal stability of ultrathin ZrO2 films prepared by chemical vapor deposition on Si(100). Appl. Phys. Lett. 78, 368 (2001).

    Article  CAS  Google Scholar 

  10. M. Balog, M. Schieber, S. Patai, and M. Michman: Thin films of metal oxides on silicon by chemical vapor deposition with organometallic compounds. J. Cryst. Growth 17, 298 (1972).

    Article  CAS  Google Scholar 

  11. M. Balog, M. Schieber, M. Michman, and S. Patai: The chemical vapour deposition and characterization of ZrO2 films from organometallic compounds. Thin Solid Films 47, 109 (1977).

    Article  CAS  Google Scholar 

  12. M. Balog, M. Schieber, M. Michman, and S. Patai: The characteristics of growth of films of zirconium and hafnium oxides (ZrO2, HfO2) by thermal decomposition of zirconium and hafnium β-diketonate complexes in the presence and absence of oxygen. J. Electrochem. Soc. 126, 1203 (1979).

    Article  CAS  Google Scholar 

  13. S.M. George: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).

    Article  CAS  Google Scholar 

  14. R.L. Puurunen: Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005).

    Article  Google Scholar 

  15. X. Meng, X. Yang, and X. Sun: Emerging applications of atomic layer deposition for lithium-ion battery studies. Adv. Mater. 24, 3589 (2012).

    Article  CAS  Google Scholar 

  16. K. Kukli, M. Ritala, and M. Leskelä: Low-temperature deposition of zirconium oxide–based nanocrystalline films by alternate supply of Zr[OC(CH3)3]4 and H2O. Chem. Vap. Deposition 6, 297 (2000).

    Article  CAS  Google Scholar 

  17. K. Kukli, K. Forsgren, J. Aarik, T. Uustare, A. Aidla, A. Niskanen, M. Ritala, M. Leskelä, and A. Hårsta: Atomic layer deposition of zirconium oxide from zirconium tetraiodide, water and hydrogen peroxide. J. Cryst. Growth 231, 262 (2001).

    Article  CAS  Google Scholar 

  18. K. Kukli, M. Kemell, J. Köykkä, K. Mizohata, M. Vehkamäki, M. Ritala, and M. Leskelä: Atomic layer deposition of zirconium dioxide from zirconium tetrachloride and ozone. Thin Solid Films 589, 597 (2015).

    Article  CAS  Google Scholar 

  19. A. Tamm, J. Kozlova, T. Arroval, L. Aarik, P. Ritslaid, H. García, H. Castán, S. Dueñas, K. Kukli, and J. Aarik: Atomic layer deposition and characterization of dysprosium-doped zirconium oxide thin films. Chem. Vap. Deposition 21, 181 (2015).

    Article  CAS  Google Scholar 

  20. M. Cassir, F. Goubin, C. Bernay, P. Vernoux, and D. Lincot: Synthesis of ZrO2 thin films by atomic layer deposition: Growth kinetics, structural and electrical properties. Appl. Surf. Sci. 193, 120 (2002).

    Article  CAS  Google Scholar 

  21. W.H. Nam and S.W. Rhee: Atomic layer deposition of ZrO2 thin films using dichlorobis[bis-(trimethylsilyl)amido]zirconium and water. Chem. Vap. Deposition 10, 201 (2004).

    Article  CAS  Google Scholar 

  22. J.K. An, J.T. Kim, G. Kang, N.K. Oh, S.H. Hahm, G. Lee, I.S. Park, and J.Y. Yun: ZrO2 film prepared by atomic layer deposition using less viscous cocktail CpZr[N(CH3)2]3/C7H8 precursor and ozone. J. Alloys Compd. 701, 310 (2017).

    Article  CAS  Google Scholar 

  23. D.M. Hausmann, E. Kim, J. Becker, and R.G. Gordon: Atomic layer deposition of hafnium and zirconium oxides using metal amide precursors. Chem. Mater. 14, 4350 (2002).

    Article  CAS  Google Scholar 

  24. D.M. Hausmann and R.G. Gordon: Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films. J. Cryst. Growth 249, 251 (2003).

    Article  CAS  Google Scholar 

  25. J.S. Becker, E. Kim, and R.G. Gordon: Atomic layer deposition of insulating hafnium and zirconium nitrides. Chem. Mater. 16, 3497 (2004).

    Article  CAS  Google Scholar 

  26. J. Liu, X. Meng, M.N. Banis, M. Cai, R. Li, and X. Sun: Crystallinity-controlled synthesis of zirconium oxide thin films on nitrogen-doped carbon nanotubes by atomic layer deposition. J. Phys. Chem. C 116, 14656 (2012).

    Article  CAS  Google Scholar 

  27. J. Liu, X. Meng, Y. Hu, D. Geng, M.N. Banis, M. Cai, R. Li, and X. Sun: Controlled synthesis of zirconium oxide on graphene nanosheets by atomic layer deposition and its growth mechanism. Carbon 52, 74 (2013).

    Article  CAS  Google Scholar 

  28. X. Meng, J.A. Libera, T.T. Fister, H. Zhou, J.K. Hedlund, P. Fenter, and J.W. Elam: Atomic layer deposition of gallium sulfide films using hexakis(dimethylamido)digallium and hydrogen sulfide. Chem. Mater. 26, 1029 (2014).

    Article  CAS  Google Scholar 

  29. X. Meng, Y. Cao, J.A. Libera, and J.W. Elam: Atomic layer deposition of aluminum sulfide: Growth mechanism and electrochemical evaluation in lithium-ion batteries. Chem. Mater. 29, 9043 (2017).

    Article  CAS  Google Scholar 

  30. J. Cai, Z. Ma, U. Wejinya, M. Zou, Y. Liu, H. Zhou, and X. Meng: A revisit to atomic layer deposition of zinc oxide using diethylzinc and water as precursors. J. Mater. Sci. 54, 5236 (2019).

    Article  CAS  Google Scholar 

  31. X. Meng, D. Geng, J. Liu, R. Li, and X. Sun: Controllable synthesis of graphene-based titanium dioxide nanocomposites by atomic layer deposition. Nanotechnology 22, 165602 (2011).

    Article  Google Scholar 

  32. X. Meng, Y. Zhang, S. Sun, R. Li, and X. Sun: Three growth modes and mechanisms for highly structure-tunable SnO2 nanotube arrays of template-directed atomic layer deposition. J. Mater. Chem. 21, 12321 (2011).

    Article  CAS  Google Scholar 

  33. X. Meng, Y. Zhong, Y. Sun, M. Norouzi Banis, R. Li, and X. Sun: Nitrogen-doped carbon nanotubes coated by atomic layer deposited SnO2 with controlled morphology and phase. Carbon 49, 1133 (2011).

    Article  CAS  Google Scholar 

  34. R.C. Garvie: The occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem. 69, 1238 (1965).

    Article  CAS  Google Scholar 

  35. S. Ferrari, D.T. Dekadjevi, S. Spiga, G. Tallarida, C. Wiemer, and M. Fanciulli: Structural and electrical characterization of ALCVD ZrO2 thin films on silicon. J. Non-Cryst. Solids 303, 29 (2002).

    Article  CAS  Google Scholar 

  36. M.W. Pitcher, S.V. Ushakov, A. Navrotsky, B.F. Woodfield, G. Li, J. Boerio-Goates, and B.M. Tissue: Energy crossovers in nanocrystalline zirconia. J. Am. Ceram. Soc. 88, 160 (2005).

    Article  CAS  Google Scholar 

  37. L. Chen, T. Mashimo, E. Omurzak, H. Okudera, C. Iwamoto, and A. Yoshiasa: Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid. J. Phys. Chem. C 115, 9370 (2011).

    Article  CAS  Google Scholar 

  38. G.K. Hyde, G. Scarel, J.C. Spagnola, Q. Peng, K. Lee, B. Gong, K.G. Roberts, K.M. Roth, C.A. Hanson, C.K. Devine, S.M. Stewart, D. Hojo, J.S. Na, J.S. Jur, and G.N. Parsons: Atomic layer deposition and abrupt wetting transitions on nonwoven polypropylene and woven cotton fabrics. Langmuir 26, 2550 (2010).

    Article  CAS  Google Scholar 

  39. K. Lee, J.S. Jur, D.H. Kim, and G.N. Parsons: Mechanisms for hydrophilic/hydrophobic wetting transitions on cellulose cotton fibers coated using Al2O3 atomic layer deposition. J. Vac. Sci. Technol 30, 01A163 (2012).

    Article  Google Scholar 

Download references

Acknowledgment

Funding for this research was provided by the Center for Advanced Surface Engineering, under the National Science Foundation Grant No. OIA-1457888 and the Arkansas EPSCoR Program, ASSET III. Portions of this work were performed at GeoSoilEnviroCARS (the University of Chicago, Sector 13), APS, Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation—Earth Sciences (EAR—1634415) and Department of Energy-GeoSciences (DE-FG02-94ER14466). This research used resources of the APS, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. We appreciate the assistance provided by Professor Peter Eng (Research Professor, CARS and JFI, University of Chicago) at the University of Chicago.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Zou or Xiangbo Meng.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ghosh, S.K., Afshar-Mohajer, M. et al. Atomic layer deposition of zirconium oxide thin films. Journal of Materials Research 35, 804–812 (2020). https://doi.org/10.1557/jmr.2019.338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.338

Navigation