Skip to main content
Log in

Atomic layer deposition of cubic tin–calcium sulfide alloy films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We deposit films of tin–calcium sulfide by atomic layer deposition (ALD) and demonstrate the metastability of this material. Rough and spiky films are obtained by using Sn and Ca precursors with different ligands, whereas compact and smooth films are obtained when the two metal sources share the same ligands. Compositional and quartz crystal microbalance results indicate that part of the underlaying SnS film is replaced and/or removed during the CaS ALD cycle during the ternary film deposition, possibly via a temperature-dependent cation exchange mechanism. The crystal structure transforms from orthorhombic to cubic as the calcium content increases. Furthermore, resistivity increases with calcium content in the alloy films, whereas optical band gap only depends weakly on Ca content. After annealing at 400 °C in an H2S environment, the cubic alloy film undergoes a phase transition into the orthorhombic phase and its resistivity also decreases. Both phenomena could be explained by phase separation of the metastable alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. K.T. Ramakrishna Reddy, N. Koteswara Reddy, and R.W. Miles: Photovoltaic properties of SnS based solar cells. Sol. Energy Mater. Sol. Cells 90, 3041 (2006).

    Article  CAS  Google Scholar 

  2. P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, and R.G. Gordon: Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer. Appl. Phys. Lett. 102, 053901 (2013).

    Article  Google Scholar 

  3. P. Sinsermsuksakul, L. Sun, S.W. Lee, H.H. Park, S.B. Kim, C. Yang, and R.G. Gordon: Overcoming efficiency limitations of SnS-based solar cells. Adv. Energy Mater. 4, 1400496 (2014).

    Article  Google Scholar 

  4. R. Jaramillo, V. Steinmann, C. Yang, K. Hartman, R. Chakraborty, J.R. Poindexter, M.L. Castillo, R. Gordon, and T. Buonassisi: Making record-efficiency SnS solar cells by thermal evaporation and atomic layer deposition. J. Visualized Exp. 99, e52705 (2015).

    Google Scholar 

  5. W. Albers, C. Haas, H.J. Vink, and J.D. Wasscher: Investigations on SnS. J. Appl. Phys. 32, 2220 (1961).

    Article  CAS  Google Scholar 

  6. N.K. Abrikosov, V.F. Bankina, L.V. Poretskaya, L.E. Shelimova, and E.V. Skudnova: Semiconducting II–VI, IV–VI, and V–VI Compounds (Springer, Berlin, 1969).

    Book  Google Scholar 

  7. J. Vidal, S. Lany, M. d’Avezac, A. Zunger, A. Zakutayev, J. Francis, and J. Tate: Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS. Appl. Phys. Lett. 100, 032104 (2012).

    Article  Google Scholar 

  8. G.A. Tritsaris, B.D. Malone, and E. Kaxiras: Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study. J. Appl. Phys. 113, 233507 (2013).

    Article  Google Scholar 

  9. P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, and R.G. Gordon: Atomic layer deposition of tin monosulfide thin films. Adv. Energy Mater. 1, 1116 (2011).

    Article  CAS  Google Scholar 

  10. R.W. Miles, O.E. Ogah, G. Zoppi, and I. Forbes: Thermally evaporated thin films of SnS for application in solar cell devices. Thin Solid Films 517, 4702 (2009).

    Article  CAS  Google Scholar 

  11. S.B. Badachhape and A. Goswami: Structure of evaporated tin sulphide. J. Phys. Soc. Jpn. 17, 251–253 (1962).

    Article  CAS  Google Scholar 

  12. A.N. Mariano and K.L. Chopra: Polymorphism in some IV–VI compounds induced by high pressure and thin-film epitaxial growth. Appl. Phys. Lett. 10, 282 (1967).

    Article  CAS  Google Scholar 

  13. D. Avellaneda, M.T.S. Nair, and P.K. Nair: Polymorphic tin sulfide thin films of zinc blende and orthorhombic structures by chemical deposition. J. Electrochem. Soc. 155, D517 (2008).

    Article  CAS  Google Scholar 

  14. C. Gao, H. Shen, and L. Sun: Preparation and properties of zinc blende and orthorhombic SnS films by chemical bath deposition. Appl. Surf. Sci. 257, 6750 (2011).

    Article  CAS  Google Scholar 

  15. L.A. Burton and A. Walsh: Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3. J. Phys. Chem. C 116, 24262 (2012).

    Article  CAS  Google Scholar 

  16. A. Rabkin, S. Samuha, R.E. Abutbul, V. Ezersky, L. Meshi, and Y. Golan: New nanocrystalline materials: A previously unknown simple cubic phase in the SnS binary system. Nano Lett. 15, 2174 (2015).

    Article  CAS  Google Scholar 

  17. R.E. Abutbul, A.R. Garcia-Angelmo, Z. Burshtein, M.T.S. Nair, P.K. Nair, and Y. Golan: Crystal structure of a large cubic tin monosulfide polymorph: An unraveled puzzle. CrystEngComm 18, 5188 (2016).

    Article  CAS  Google Scholar 

  18. R.E. Abutbul, E. Segev, L. Zeiri, V. Ezersky, G. Makov, and Y. Golan: Synthesis and properties of nanocrystalline π-SnS—A new cubic phase of tin sulphide. RSC Adv. 6, 5848 (2016).

    Article  CAS  Google Scholar 

  19. A.R. Garcia-Angelmo, R. Romano-Trujillo, J. Campos-Álvarez, O. Gomez-Daza, M.T.S. Nair, and P.K. Nair: Thin film solar cell of SnS absorber with cubic crystalline structure. Phys. Status Solidi A 212, 2332 (2015).

    Article  CAS  Google Scholar 

  20. U. Chalapathi, B. Poornaprakash, and S-H. Park: Chemically deposited cubic SnS thin films for solar cell applications. Sol. Energy 139, 238 (2016).

    Article  CAS  Google Scholar 

  21. J. Breternitz, R. Gunder, H. Hempel, S. Binet, I. Ahmet, and S. Schorr: Facile bulk synthesis of π-cubic SnS. Inorg. Chem. 56, 11455 (2017).

    Article  CAS  Google Scholar 

  22. I-H. Baek, J.J. Pyeon, Y.G. Song, T-M. Chung, H-R. Kim, S-H. Baek, J-S. Kim, C-Y. Kang, J-W. Choi, C.S. Hwang, J.H. Han, and S.K. Kim: Synthesis of SnS thin films by atomic layer deposition at low temperatures. Chem. Mater. 29, 8100 (2017).

    Article  CAS  Google Scholar 

  23. O.V. Bilousov, Y. Ren, T. Törndahl, O. Donzel-Gargand, T. Ericson, C. Platzer-Björkman, M. Edoff, and C. Hägglund: Atomic layer deposition of cubic and orthorhombic phase tin monosulfide. Chem. Mater. 29, 2969 (2017).

    Article  CAS  Google Scholar 

  24. C-Z. Ning, L. Dou, and P. Yang: Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017).

    Article  CAS  Google Scholar 

  25. X. Lou, H. Zhou, S.B. Kim, S. Alghamdi, X. Gong, J. Feng, X. Wang, P.D. Ye, and R.G. Gordon: Epitaxial growth of MgxCa1−xO on GaN by atomic layer deposition. Nano Lett. 16, 7650 (2016).

    Article  CAS  Google Scholar 

  26. J.R. Bakke, J.T. Tanskanen, C. Hägglund, T.A. Pakkanen, and S.F. Bent: Growth characteristics, material properties, and optical properties of zinc oxysulfide films deposited by atomic layer deposition. J. Vac. Sci. Technol., A 30, 01A135 (2012).

    Article  Google Scholar 

  27. A.M. Holder, S. Siol, P.F. Ndione, H. Peng, A.M. Deml, B.E. Matthews, L.T. Schelhas, M.F. Toney, R.G. Gordon, W. Tumas, J.D. Perkins, D.S. Ginley, B.P. Gorman, J. Tate, A. Zakutayev, and S. Lany: Novel phase diagram behavior and materials design in heterostructural semiconductor alloys. Sci. Adv. 3, e1700270 (2017).

    Article  Google Scholar 

  28. J. Vidal, S. Lany, J. Francis, R. Kokenyesi, and J. Tate: Structural and electronic modification of photovoltaic SnS by alloying. J. Appl. Phys. 115, 113507 (2014).

    Article  Google Scholar 

  29. B.E. Matthews, A.M. Holder, L.T. Schelhas, S. Siol, J.W. May, M.R. Forkner, D. Vigil-Fowler, M.F. Toney, J.D. Perkins, B.P. Gorman, A. Zakutayev, S. Lany, and J. Tate: Using heterostructural alloying to tune the structure and properties of the thermoelectric Sn1−xCaxSe. J. Mater. Chem. A 5, 16873 (2017).

    Article  CAS  Google Scholar 

  30. V. Miikkulainen, M. Leskelä, M. Ritala, and R.L. Puurunen: Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 113, 021301 (2013).

    Article  Google Scholar 

  31. R.W. Johnson, A. Hultqvist, and S.F. Bent: A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 17, 236 (2014).

    Article  CAS  Google Scholar 

  32. S.M. George: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).

    Article  CAS  Google Scholar 

  33. J. Rautanen, M. Leskela, L. Niinisto, E. Nykhen, P. Soininen, and M. Utriainen: The effect of growth parameters on the deposition of CaS thin films by atomic layer epitaxy. Appl. Surf. Sci. 82–83, 553 (1994).

    Article  Google Scholar 

  34. T. Hanninen, I. Mutikainen, V. Saanila, M. Ritala, and M. Leskela: [Ca(Thd)2(Tetraen)]: A monomeric precursor for deposition of CaS thin films. Chem. Mater. 9, 1234 (1997).

    Article  Google Scholar 

  35. S.B. Kim, C. Yang, T. Powers, L.M. Davis, X. Lou, and R.G. Gordon: Synthesis of calcium(II) amidinate precursors for atomic layer deposition through a redox reaction between calcium and amidines. Angew. Chem., Int. Ed. Engl. 55, 10228 (2016).

    Article  CAS  Google Scholar 

  36. H.H. Park, R. Heasley, L. Sun, V. Steinmann, R. Jaramillo, K. Hartman, R. Chakraborty, P. Sinsermsuksakul, D. Chua, T. Buonassisi, and R.G. Gordon: Co-optimization of SnS absorber and Zn(O,S) buffer materials for improved solar cells. Prog. Photovolt. Res. Appl. 23, 901 (2015).

    Article  CAS  Google Scholar 

  37. A.L. Catherall, S. Harris, M.S. Hill, A.L. Johnson, and M.F. Mahon: Deposition of SnS thin films from Sn(II) thioamidate precursors. Cryst. Growth Des. 17, 5544 (2017).

    Article  CAS  Google Scholar 

  38. C. Yang: Development of tin(II) sulfide solar cells by interface engineering and absorber alloying. Ph.D. thesis, Harvard University, Cambridge, 2017.

  39. E. Thimsen, Q. Peng, A.B. Martinson, M.J. Pellin, and J.W. Elam: Ion exchange in ultrathin films of Cu2S and ZnS under atomic layer deposition conditions. Chem. Mater. 23, 4411–4413 (2011).

    Article  CAS  Google Scholar 

  40. D. Ritter and K. Weiser: Suppression of interference fringes in absorption measurements on thin films. Opt. Commun. 57 5, 336 (1986).

    Article  CAS  Google Scholar 

  41. P. Sinsermsuksakul: Development of earth-abundant tin(II) sulfide thin-film solar cells by vapor deposition. Ph.D. thesis, Harvard University, Cambridge, 2013.

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Center for the Next Generation of Materials by Design, an Energy Frontier Research Center funded by the U.S. DOE, Office of Science. Part of the work was performed at the Center for Nanoscale Systems (CNS) at Harvard University, a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under NSF award no. ECS-0335765. Use of the SSRL, SLAC National Accelerator Laboratory, was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy G. Gordon.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Zhao, X., Kim, S.B. et al. Atomic layer deposition of cubic tin–calcium sulfide alloy films. Journal of Materials Research 35, 795–803 (2020). https://doi.org/10.1557/jmr.2019.337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.337

Navigation