Skip to main content
Log in

Recent advances in the understanding of high-k dielectric materials deposited by atomic layer deposition for dynamic random-access memory capacitor applications

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Capacitors represent the largest obstacle to dynamic random-access memory (DRAM) technology evolution because the capacitor properties govern the overall operational characteristics of DRAM devices. Moreover, only the atomic layer deposition (ALD) technique is used for the dielectric and electrode because of its extreme geometry. Various high-k materials deposited by ALD have been investigated for further scaling. Whereas past investigations focused on increasing the physical thickness of the dielectric to suppress leakage current, the physical thickness of the dielectric should also be limited to a few nanometers in design rules less than 1×-nm. Therefore, a new way to overcome the limitations of traditional approaches based on thorough understanding of high-k materials is highly recommended to enhance the properties of conventional materials and provide directions for developing new materials. In this review, previously reported results are discussed, and suggestions are made for further investigations for DRAM capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. C.S. Hwang: Prospective of semiconductor memory devices: From memory system to materials. Adv. Electron. Mater. 1, 1400056 (2015).

    Article  CAS  Google Scholar 

  2. D.E. Kotecki: A review of high dielectric materials for dram capacitors. Integr. Ferroelectr. 16, 1 (1997).

    Article  CAS  Google Scholar 

  3. J.F. Scott: High-dielectric constant thin films for dynamic random access memories (DRAM). Annu. Rev. Mater. Sci. 28, 79 (1998).

    Article  CAS  Google Scholar 

  4. S.K. Kim and M. Popovici: Future of dynamic random-access memory as main memory. MRS Bull. 43, 334 (2018).

    Article  Google Scholar 

  5. G.D. Wilk, R.M. Wallace, and J.M. Anthony: High-k gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89, 5243 (2001).

    Article  CAS  Google Scholar 

  6. G. Jegert, A. Kersch, W. Weinreich, and P. Lugli: Monte carlo simulation of leakage currents in TiN/ZrO2TiN capacitors. IEEE Trans. Electron Devices 58, 327 (2011).

    Article  CAS  Google Scholar 

  7. J. Robertson and R.M. Wallace: High-k materials and metal gates for CMOS applications. Mater. Sci. Eng., R 88, 1 (2015).

    Article  Google Scholar 

  8. W. Zhu, T. Low, Y-H. Lee, H. Wang, D.B. Farmer, J. Kong, F. Xia, and P. Avouris: Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat. Commun. 5, 10451 (2014).

    Google Scholar 

  9. J.D. Baniecki, T. Shioga, K. Kurihara, and N. Kamehara: Investigation of the importance of interface and bulk limited transport mechanisms on the leakage current of high dielectric constant thin film capacitors. J. Appl. Phys. 94, 6741 (2003).

    Article  CAS  Google Scholar 

  10. J. Robertson: High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69, 327 (2006).

    Article  CAS  Google Scholar 

  11. K. Yim, Y. Yong, J. Lee, K. Lee, H.H. Nahm, J. Yoo, C. Lee, C.S. Hwang, and S. Han: Novel high-k dielectrics for next-generation electronic devices screened by automated ab initio calculations. NPG Asia Mater. 7, e190 (2015).

    Article  CAS  Google Scholar 

  12. M.S. Khan, H.J. Kim, T. Taniguchi, Y. Ebina, T. Sasaki, and M. Osada: Layer-by-layer engineering of two-dimensional perovskite nanosheets for tailored microwave dielectrics. Appl. Phys. Express 10, 091501 (2017).

    Article  Google Scholar 

  13. X. Liu, S. Ramanathan, A. Longdergan, A. Srivastava, E. Lee, T.E. Seidel, J.T. Barton, D. Pang, and R.G. Gordon: ALD of hafnium oxide thin films from tetrakis(ethylmethylamino)hafnium and ozone. J. Electrochem. Soc. 152, G213 (2005).

    Article  CAS  Google Scholar 

  14. J.S. Ponraj, G. Attolini, and M. Bosi: Review on atomic layer deposition and applications of oxide thin films. Crit. Rev. Solid State Mater. Sci. 38, 203 (2013).

    Article  CAS  Google Scholar 

  15. R.W. Johnson, A. Hultqvist, and S.F. Bent: A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 17, 236 (2014).

    Article  CAS  Google Scholar 

  16. S.M. George: Atomic layer deposition: An overview. Chem. Rev. 110, 111 (2010).

    Article  CAS  Google Scholar 

  17. M. Leskelä and M. Ritala: Atomic layer deposition (ALD): From precursors to thin film structures. Thin Solid Films 409, 138–146 (2002).

    Article  Google Scholar 

  18. C. Richter, T. Schenk, U. Schroeder, and T. Mikolajick: Film properties of low temperature HfO2 grown with H2O, O3, or remote O2-plasma. J. Vac. Sci. Technol., A 32, 01A117 (2014).

    Article  CAS  Google Scholar 

  19. J.H. Kim, T.J. Park, S.K. Kim, D-Y. Cho, H-S. Jung, S.Y. Lee, and C.S. Hwang: Chemical structures and electrical properties of atomic layer deposited HfO2 thin films grown at an extremely low temperature (≤100 °C) using O3 as an oxygen source. Appl. Surf. Sci. 292, 852 (2014).

    Article  CAS  Google Scholar 

  20. U. Schroeder, S. Jakschik, E. Erben, A. Avellan, S.P. Kudelka, M. Kerber, A. Link, and A. Kersch: Recent Developments in ALD Technology for 50 nm Trench DRAM Applications, S. Kar, S. De Gendt, M. Houssa, D. Landheer, D. Misra, and W. Tsai, eds. (ECS Transactions 1, Los Angeles, CA, 2005); pp. 125–132.

  21. Y.W. Yoo, W. Jeon, W. Lee, C.H. An, S.K. Kim, and C.S. Hwang: Structure and electrical properties of Al-doped HfO2 and ZrO2 films grown via atomic layer deposition on Mo electrodes. ACS Appl. Mater. Interfaces 6, 22474 (2014).

    Article  CAS  Google Scholar 

  22. X. Zhao and D. Vanderbilt: Phonons and lattice dielectric properties of zirconia. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 1 (2002).

    Google Scholar 

  23. X. Zhao and D. Vanderbilt: First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B 65, 233106 (2002).

    Article  CAS  Google Scholar 

  24. H.S. Jung, J.H. Jang, D.Y. Cho, S.H. Jeon, H.K. Kim, S.Y. Lee, and C.S. Hwang: The effects of postdeposition annealing on the crystallization and electrical characteristics of HfO2 and ZrO2 gate dielectrics. Electrochem. Solid-State Lett. 14, G17 (2011).

    Article  CAS  Google Scholar 

  25. Y. Lee, W. Jeon, Y. Cho, M-H. Lee, S-J. Jeong, J. Park, and S. Park: Mesostructured HfxAlyO2 thin films as reliable and robust gate dielectrics with tunable dielectric constants for high-performance graphene-based transistors. ACS Nano 10, 6659 (2016).

    Article  CAS  Google Scholar 

  26. J.H. Lee, I-H. Yu, S.Y. Lee, and C.S. Hwang: Phase control of HfO2-based dielectric films for higher-k materials. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 32, 03D109 (2014).

    Article  CAS  Google Scholar 

  27. W. Weinreich, A. Shariq, K. Seidel, J. Sundqvist, A. Paskaleva, M. Lemberger, and A.J. Bauer: Detailed leakage current analysis of metal–insulator–metal capacitors with ZrO2, ZrO2/SiO2/ZrO2, and ZrO2/Al2O3/ZrO2 as dielectric and TiN electrodes. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 31, 01A109 (2013).

    Google Scholar 

  28. S.Y. Lee, J. Chang, Y. Kim, H. Lim, H. Jeon, and H. Seo: Depth resolved band alignments of ultrathin TiN/ZrO2 and TiN/ZrO2–Al2O3–ZrO2 dynamic random access memory capacitors. Appl. Phys. Lett. 105, 201603 (2014).

    Article  CAS  Google Scholar 

  29. S.Y. Lee, J. Chang, J. Choi, Y. Kim, H. Lim, H. Jeon, and H. Seo: Investigation of ultrathin Pt/ZrO2–Al2O3–ZrO2/TiN DRAM capacitors Schottky barrier height by internal photoemission spectroscopy. Curr. Appl. Phys. 17, 267 (2017).

    Article  Google Scholar 

  30. S-Y. Lee, H. Kim, P.C. McIntyre, K.C. Saraswat, and J-S. Byun: Atomic layer deposition of ZrO2 on W for metal–insulator–metal capacitor application. Appl. Phys. Lett. 82, 2874 (2003).

    Article  CAS  Google Scholar 

  31. S. Knebel, U. Schroeder, D. Zhou, T. Mikolajick, and G. Krautheim: Conduction mechanisms and breakdown characteristics of Al2O3-doped ZrO2 high-k dielectrics for three-dimensional stacked metal–insulator–metal capacitors. IEEE Trans. Device Mater. Reliab. 14, 154 (2014).

    Article  CAS  Google Scholar 

  32. G. Jegert, A. Kersch, W. Weinreich, and P. Lugli: Ultimate scaling of TiN/ZrO2/TiN capacitors: Leakage currents and limitations due to electrode roughness. J. Appl. Phys. 109, 014504 (2011).

    Article  CAS  Google Scholar 

  33. G. Jegert, D. Popescu, P. Lugli, M.J. Häufel, W. Weinreich, and A. Kersch: Role of defect relaxation for trap-assisted tunneling in high-k thin films: A first-principles kinetic monte carlo study. Phys. Rev. B 85, 045303 (2012).

    Article  CAS  Google Scholar 

  34. W. Jeon, Y. Kim, C.H. An, C.S. Hwang, P. Gonon, and C. Vallee: Demonstrating the ultrathin metal–insulator–metal diode using TiN/ZrO2–Al2O3–ZrO2 stack by employing RuO2 top electrode. IEEE Trans. Electron Devices 65, 660 (2018).

    Article  CAS  Google Scholar 

  35. D. Martin, M. Grube, W. Weinreich, J. Müller, W.M. Weber, U. Schröder, H. Riechert, and T. Mikolajick: Mesoscopic analysis of leakage current suppression in ZrO2/Al2O3/ZrO2 nano-laminates. J. Appl. Phys. 113, 194103 (2013).

    Article  CAS  Google Scholar 

  36. L-M. Wang: Relationship between Intrinsic Breakdown Field and Bandgap of Materials, N. Stojadinović, S. Dimitrijev, H. Iwai, S. Selberherr, J. Liou, I. Manić, and T. Pešić, eds. (25th International Conference on Microelectronics, Belgrade, Serbia and Montenegro, 2006); p. 576.

  37. S.K. Kim and C.S. Hwang: Atomic layer deposition of ZrO2 thin films with high dielectric constant on TiN substrates. Electrochem. Solid-State Lett. 11, G9 (2008).

    Article  CAS  Google Scholar 

  38. H.J. Cho, Y.D. Kim, D.S. Park, E. Lee, C.H. Park, J.S. Jang, K.B. Lee, H.W. Kim, Y.J. Ki, I.K. Han, and Y.W. Song: New TIT capacitor with ZrO2/Al2O3/ZrO2 dielectrics for 60 nm and below DRAMs. Solid State Electron. 51, 1529 (2007).

    Article  CAS  Google Scholar 

  39. B. Lee, K.J. Choi, A. Hande, M.J. Kim, R.M. Wallace, J. Kim, Y. Senzaki, D. Shenai, H. Li, M. Rousseau, and J. Suydam: A novel thermally-stable zirconium amidinate ALD precursor for ZrO2 thin films. Microelectron. Eng. 86, 272 (2009).

    Article  CAS  Google Scholar 

  40. H. Cho, Y. Kim, D. Park, E. Lee, C. Park, J. Jang, K. Lee, H. Kim, S. Chae, Y. Ki, I. Han, and Y. Song: New TIT Capacitor with ZrO2/Al2O3/ZrO2 dielectrics for 60 nm and below DRAMs, M. Declercq, Y. Leblebici, A. Ionescu, H. Shea, R. Thewes, C. Enz, Q. Huang, T. Noll, G. DeMicheli, W. Grabinski, K. Ishimaru, S. Eggli, and V. Aguet, eds. (European Solid-State Device Research Conference, 36, Montreux, Switzerland, 2006); p. 146.

  41. D-S. Kil, H-S. Song, K-J. Lee, K. Hong, J-H. Kim, K-S. Park, S-J. Yeom, J-S. Roh, N-J. Kwak, H-C. Sohn, J-W. Kim, and S-W. Park: Development of New TiN/ZrO2/Al2O3/ZrO2/TiN Capacitors Extendable to 45 nm Generation DRAMs Replacing HfO2 Based Dielectrics, R. Havemann, S. Kimura, L. Tran, and R. Yamada, eds. (2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers, Hawaii, USA, 2006); p. 38.

  42. W. Jeon, O. Salicio, A. Chaker, P. Gonon, and C. Vallee: Controlling the current conduction asymmetry of HfO2 metal–insulator–metal diodes by interposing Al2O3 layer. IEEE Trans. Electron Devices 66, 402 (2019).

    Article  CAS  Google Scholar 

  43. C.H. An, W. Lee, S.H. Kim, C.J. Cho, D-G. Kim, D.S. Kwon, S.T. Cho, S.H. Cha, J.I. Lim, W. Jeon, and C.S. Hwang: Controlling the electrical characteristics of ZrO2/Al2O3/ZrO2 capacitors by adopting a Ru top electrode grown via atomic layer deposition. Phys. Status Solidi RRL 13, 1800454 (2019).

    Article  CAS  Google Scholar 

  44. K. Tapily, D. Gu, H. Baumgart, G. Namkoong, D. Stegall, and A.A. Elmustafa: Mechanical and structural characterization of atomic layer deposition-based ZnO films. Semicond. Sci. Technol. 26, 115005 (2011).

    Article  CAS  Google Scholar 

  45. N. Hornsveld, B. Put, W.M.M. Kessels, P.M. Vereecken, and M. Creatore: Plasma-assisted and thermal atomic layer deposition of electrochemically active Li2CO3. RSC Adv. 7, 41359 (2017).

    Article  CAS  Google Scholar 

  46. W-H. Choi, J. Sheng, H-J. Jeong, J-S. Park, M. Kim, and W. Jeon: Improved performance and stability of In–Sn–Zn–O thin film transistor by introducing a meso-crystalline ZrO2 high-k gate insulator. J. Vac. Sci. Technol., A 37, 020924 (2019).

    Article  CAS  Google Scholar 

  47. J.Y. Kim, D-W. Kim, H.S. Jung, and K.S. Hong: Influence of anatase–rutile phase transformation on dielectric properties of sol–gel derived TiO2 thin films. Jpn. J. Appl. Phys. 44, 6148 (2005).

    Article  CAS  Google Scholar 

  48. H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, and F. Lévy: Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75, 2042 (1994).

    Article  CAS  Google Scholar 

  49. S. Di Mo and W.Y. Ching: Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B 51, 13023 (1995).

    Article  CAS  Google Scholar 

  50. W. Jeon, H-S. Chung, D. Joo, and S-W. Kang: TiO2/Al2O3/TiO2 nanolaminated thin films for DRAM capacitor deposited by plasma-enhanced atomic layer deposition. Electrochem. Solid-State Lett. 11, H19 (2008).

    Article  CAS  Google Scholar 

  51. S.K. Kim, G-J. Choi, S.Y. Lee, M. Seo, S.W. Lee, J.H. Han, H-S. Ahn, S. Han, and C.S. Hwang: Al-doped TiO2 films with ultralow leakage currents for next generation DRAM capacitors. Adv. Mater. 20, 1429 (2008).

    Article  CAS  Google Scholar 

  52. P. Deák, B. Aradi, and T. Frauenheim: Polaronic effects in TiO2 calculated by the HSE06 hybrid functional: Dopant passivation by carrier self-trapping. Phys. Rev. B 83, 155207 (2011).

    Article  CAS  Google Scholar 

  53. W. Jeon, S.H. Rha, W. Lee, Y.W. Yoo, C.H. An, K.H. Jung, S.K. Kim, and C.S. Hwang: Controlling the Al-doping profile and accompanying electrical properties of rutile-phased TiO2 thin films. ACS Appl. Mater. Interfaces 6, 7910 (2014).

    Article  CAS  Google Scholar 

  54. J.H. Han, S. Han, W. Lee, S.W. Lee, S.K. Kim, J. Gatineau, C. Dussarrat, and C.S. Hwang: Improvement in the leakage current characteristic of metal–insulator–metal capacitor by adopting RuO2 film as bottom electrode. Appl. Phys. Lett. 99, 022901 (2011).

    Article  CAS  Google Scholar 

  55. W. Jeon, S.H. Rha, W. Lee, C.H. An, M.J. Chung, S.H. Kim, C.J. Cho, S.K. Kim, and C.S. Hwang: Asymmetry in electrical properties of Al-doped TiO2 film with respect to bias voltage. Phys. Status Solidi RRL 9, 410 (2015).

    Article  CAS  Google Scholar 

  56. J.H. Shim, H.J. Choi, Y. Kim, J. Torgersen, J. An, M.H. Lee, and F.B. Prinz: Process-property relationship in high: K ALD SrTiO3 and BaTiO3: A review. J. Mater. Chem. C 5, 8000 (2017).

    Article  CAS  Google Scholar 

  57. R. Ulrich, L. Schaper, D. Nelms, and M. Leftwich: Comparison of paraelectric and ferroelectric materials for applications as dielectrics in thin film integrated capacitors. Int. J. Microcircuits Electron. Packag. 23, 172 (2000).

    CAS  Google Scholar 

  58. B.K. Choudhury, K.V. Rao, and R.N.P. Choudhury: Dielectric properties of SrTiO3 single crystals subjected to high electric fields and later irradiated with X-rays or γ-rays. J. Mater. Sci. 24, 3469 (1989).

    Article  CAS  Google Scholar 

  59. S. Dugu, S.P. Pavunny, J.F. Scott, and R.S. Katiyar: Si:SrTiO3–Al2O3–Si:SrTiO3 multi-dielectric architecture for metal–insulator–metal capacitor applications. Appl. Phys. Lett. 109, 212901 (2016).

    Article  CAS  Google Scholar 

  60. J. Swerts, M. Popovici, B. Kaczer, M. Aoulaiche, A. Redolfi, S. Clima, C. Caillat, W.C. Wang, V.V. Afanasev, N. Jourdan, C. Olk, H. Hody, S. Van Elshocht, and M. Jurczak: Leakage control in 0.4 nm EOT Ru/SrTiOx/Ru metal–insulator–metal capacitors: Process implications. IEEE Electron Device Lett. 35, 753 (2014).

    Article  CAS  Google Scholar 

  61. S.A. Mojarad, K.S.K. Kwa, J.P. Goss, Z. Zhou, N.K. Ponon, D.J.R. Appleby, R.A.S. Al-Hamadany, and A. O’Neill: A comprehensive study on the leakage current mechanisms of Pt/SrTiO3/Pt capacitor. J. Appl. Phys. 111, 014503 (2012).

    Article  CAS  Google Scholar 

  62. C-K. Lee, E. Cho, H-S. Lee, C.S. Hwang, and S. Han: First-principles study on doping and phase stability of HfO2. Phys. Rev. B 78, 012102 (2008).

    Article  CAS  Google Scholar 

  63. K. Tomida, K. Kita, and A. Toriumi: Dielectric constant enhancement due to Si incorporation into HfO2. Appl. Phys. Lett. 89, 142902 (2006).

    Article  CAS  Google Scholar 

  64. P.K. Park and S-W. Kang: Enhancement of dielectric constant in HfO2 thin films by the addition of Al2O3. Appl. Phys. Lett. 89, 192905 (2006).

    Article  CAS  Google Scholar 

  65. D-Y. Cho, H.S. Jung, I-H. Yu, J.H. Yoon, H.K. Kim, S.Y. Lee, S.H. Jeon, S. Han, J.H. Kim, T.J. Park, B-G. Park, and C.S. Hwang: Stabilization of tetragonal HfO2 under low active oxygen source environment in atomic layer deposition. Chem. Mater. 24, 3534 (2012).

    Article  CAS  Google Scholar 

  66. J.H. Jang, H-S. Jung, J.H. Kim, S.Y. Lee, C.S. Hwang, and M. Kim: Investigation of oxygen-related defects and the electrical properties of atomic layer deposited HfO2 films using electron energy-loss spectroscopy. J. Appl. Phys. 109, 023718 (2011).

    Article  CAS  Google Scholar 

  67. M.H. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, and C.S. Hwang: Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature. Appl. Phys. Lett. 102, 242905 (2013).

    Article  CAS  Google Scholar 

  68. M.H. Park, Y.H. Lee, H.J. Kim, Y.J. Kim, T. Moon, K. Do Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C.S. Hwang: Ferroelectricity and antiferroelectricity of doped thin HfO2-based films. Adv. Mater. 27, 1811 (2015).

    Article  CAS  Google Scholar 

  69. M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, and C.S. Hwang: The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity. Appl. Phys. Lett. 104, 072901 (2014).

    Article  CAS  Google Scholar 

  70. R.C. Garvie: The occurrence of metastable tetragonal zirconia as a crystallite size effect. J. Phys. Chem. 69, 1238 (1965).

    Article  CAS  Google Scholar 

  71. R.C. Garvie: Stabilization of the tetragonal structure in zirconia microcrystals. J. Phys. Chem. 82, 218 (1978).

    Article  CAS  Google Scholar 

  72. M.W. Pitcher, S.V. Ushakov, A. Navrotsky, B.F. Woodfield, G. Li, J. Boerio-Goates, and B.M. Tissue: Energy crossovers in nanocrystalline zirconia. J. Am. Ceram. Soc. 88, 160 (2005).

    Article  CAS  Google Scholar 

  73. M. Shandalov and P.C. McIntyre: Size-dependent polymorphism in HfO2 nanotubes and nanoscale thin films. J. Appl. Phys. 106, 084322 (2009).

    Article  CAS  Google Scholar 

  74. S.K. Kim, W.D. Kim, K.M. Kim, C.S. Hwang, and J. Jeong: High dielectric constant TiO2 thin films on a Ru electrode grown at 250 °C by atomic-layer deposition. Appl. Phys. Lett. 85, 4112 (2004).

    Article  CAS  Google Scholar 

  75. S.K. Kim, S. Han, J.H. Han, W. Lee, and C.S. Hwang: Atomic layer deposition of TiO2 and Al-doped TiO2 films on Ir substrates for ultralow leakage currents. Phys. Status Solidi RRL 5, 262 (2011).

    Article  CAS  Google Scholar 

  76. W. Lee, C.J. Cho, W.C. Lee, C.S. Hwang, R.P.H. Chang, and S.K. Kim: MoO2 as a thermally stable oxide electrode for dynamic random-access memory capacitors. J. Mater. Chem. C 6, 13250 (2018).

    Article  CAS  Google Scholar 

  77. D-K. Lee, S-H. Kwon, and J-H. Ahn: Growth of rutile-TiO2 thin films via Sn doping and insertion of ultra-thin SnO2 interlayer by atomic layer deposition. Mater. Lett. 246, 1 (2019).

    Article  CAS  Google Scholar 

  78. S.W. Lee, J.H. Han, O.S. Kwon, and C.S. Hwang: Influences of a crystalline seed layer during atomic layer deposition of SrTiO3 thin films using Ti(O-iPr)2(thd)2, Sr(thd)2, and H2O. J. Electrochem. Soc. 155, G253 (2008).

    Article  CAS  Google Scholar 

  79. W. Lee, W. Jeon, C.H. An, M.J. Chung, H.J. Kim, T. Eom, S.M. George, B.K. Park, J.H. Han, C.G. Kim, T-M. Chung, S.W. Lee, and C.S. Hwang: Improved initial growth behavior of SrO and SrTiO3 films grown by atomic layer deposition using {Sr(demamp)(tmhd)}2 as Sr-precursor. Chem. Mater. 27, 3881–3891 (2015).

    Article  CAS  Google Scholar 

  80. A. Kosola, M. Putkonen, L-S. Johansson, and L. Niinistö: Effect of annealing in processing of strontium titanate thin films by ALD. Appl. Surf. Sci. 211, 102 (2003).

    Article  CAS  Google Scholar 

  81. M. Vehkamäki, T. Hänninen, M. Ritala, M. Leskelä, T. Sajavaara, E. Rauhala, and J. Keinonen: Atomic layer deposition of SrTiO3 thin films from a novel strontium precursor-strontium-bis(tri-isopropyl cyclopentadienyl). Chem. Vap. Depos. 7, 75 (2001).

    Article  Google Scholar 

  82. W. Lee, J.H. Han, W. Jeon, Y.W. Yoo, S.W. Lee, S.K. Kim, C-H. Ko, C. Lansalot-Matras, and C.S. Hwang: Atomic layer deposition of SrTiO3 films with cyclopentadienyl-based precursors for metal–insulator–metal capacitors. Chem. Mater. 25, 953 (2013).

    Article  CAS  Google Scholar 

  83. S.W. Lee, J.H. Han, S. Han, W. Lee, J.H. Jang, M. Seo, S.K. Kim, C. Dussarrat, J. Gatineau, Y-S. Min, and C.S. Hwang: Atomic layer deposition of SrTiO3 thin films with highly enhanced growth rate for ultrahigh density capacitors. Chem. Mater. 23, 2227 (2011).

    Article  CAS  Google Scholar 

  84. D-S. Kil, J-M. Lee, and J-S. Roh: Low-temperature ALD growth of SrTiO3 thin films from Sr β-diketonates and Ti alkoxide precursors using oxygen remote plasma as an oxidation source. Chem. Vap. Depos. 8, 195 (2002).

    Article  CAS  Google Scholar 

  85. O.S. Kwon, S.K. Kim, M. Cho, C.S. Hwang, and J. Jeong: Chemically conformal ALD of SrTiO3 thin films using conventional metallorganic precursors. J. Electrochem. Soc. 152, C229 (2005).

    Article  CAS  Google Scholar 

  86. M. Popovici, K. Tomida, J. Swerts, P. Favia, A. Delabie, H. Bender, C. Adelmann, H. Tielens, B. Brijs, B. Kaczer, M.A. Pawlak, M-S. Kim, L. Altimime, S. Van Elshocht, and J.A. Kittl: A comparative study of the microstructure-dielectric properties of crystalline SrTiO3 ALD films obtained via seed layer approach. Phys. Status Solidi 208, 1920 (2011).

    Article  CAS  Google Scholar 

  87. M.J. Chung, W. Jeon, C.H. An, S.H. Kim, Y.K. Lee, W. Lee, and C.S. Hwang: Quantitative analysis of the incorporation behaviors of Sr and Ti atoms during the atomic layer deposition of SrTiO3 thin films. ACS Appl. Mater. Interfaces 10, 8836 (2018).

    Article  CAS  Google Scholar 

  88. M. Stengel and N.A. Spaldin: Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679 (2006).

    Article  CAS  Google Scholar 

  89. C.S. Hwang: Thickness-dependent dielectric constants of (Ba, Sr)TiO3 thin films with Pt or conducting oxide electrodes. J. Appl. Phys. 92, 432 (2002).

    Article  CAS  Google Scholar 

  90. H.K. Kim, I-H. Yu, J.H. Lee, T.J. Park, and C.S. Hwang: Controlling work function and damaging effects of sputtered RuO2 gate electrodes by changing oxygen gas ratio during sputtering. ACS Appl. Mater. Interfaces 5, 1327 (2013).

    Article  CAS  Google Scholar 

  91. H. Kyeom Kim, I-H. Yu, J.H. Lee, T.J. Park, and C. Seong Hwang: Scaling of equivalent oxide thickness of atomic layer deposited HfO2 film using RuO2 electrodes suppressing the dielectric dead-layer effect. Appl. Phys. Lett. 101, 172910 (2012).

    Article  CAS  Google Scholar 

  92. W. Jeon, S. Yoo, H.K. Kim, W. Lee, C.H. An, M.J. Chung, C.J. Cho, S.K. Kim, and C.S. Hwang: Evaluating the top electrode material for achieving an equivalent oxide thickness smaller than 0.4 nm from an Al-doped TiO2 film. ACS Appl. Mater. Interfaces 6, 21632 (2014).

    Article  CAS  Google Scholar 

  93. T. Onaya, T. Nabatame, T. Sawada, K. Kurishima, N. Sawamoto, A. Ohi, T. Chikyow, and A. Ogura: Role of high-k interlayer in ZrO2/high-k/ZrO2 insulating multilayer on electrical properties for DRAM capacitor. ECS Trans. 75, 667 (2016).

    Article  CAS  Google Scholar 

  94. H.M. Kwon, I.S. Han, S.U. Park, J.D. Bok, Y.J. Jung, H.S. Shin, C.Y. Kang, B.H. Lee, R. Jammy, G.W. Lee, and H.D. Lee: Conduction mechanism and reliability characteristics of a metal–insulator–metal capacitor with single ZrO2 layer. Jpn. J. Appl. Phys. 50, 3 (2011).

    Article  CAS  Google Scholar 

  95. J.H. Kim, V. Ignatova, P. Kücher, J. Heitmann, L. Oberbeck, and U. Schröder: Physical and electrical characterization of high-k ZrO2 metal–insulator–metal capacitor. Thin Solid Films 516, 8333 (2008).

    Article  CAS  Google Scholar 

  96. S. Monaghan, K. Cherkaoui, É.O. Connor, V. Djara, P.K. Hurley, L. Oberbeck, E. Tois, L. Wilde, and S. Teichert: TiN/ZrO2/Ti/Al metal–insulator–metal capacitors with subnanometer CET using ALD-deposited ZrO2 for DRAM applications. IEEE Electron. Device Lett. 30 (3), 219 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2018R1C1B5045854), and the Industrial Strategic Technology Development Program (20003555, Development of SrTiO3BaTiO3 superlattice highk films for next generation DRAM capacitor) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojin Jeon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, W. Recent advances in the understanding of high-k dielectric materials deposited by atomic layer deposition for dynamic random-access memory capacitor applications. Journal of Materials Research 35, 775–794 (2020). https://doi.org/10.1557/jmr.2019.335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.335

Navigation