Skip to main content

Advertisement

Log in

N-doped carbon nanosheets as high-performance anodes for Li- and Na-ion batteries

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A scalable preparation of in situ N-doped disordered carbon nanosheets from reduced melamine formaldehyde resin is demonstrated. For the first time, nanosheets prepared by such a process have been tested as anodes for lithium ion and sodium ion batteries. Li-ion battery half-cell delivers a reversible capacity of about 500 mA h/g at a specific current of 100 mA/g, and also a capacity of 250 mA h/g at a specific current of 500 mA/g is retained after 600 cycles. For Na-ion batteries, a reasonable capacity of about 150 mA h/g is recorded at a specific current of 50 mA/g, and a capacity of 120 mA h/g at a specific current of 250 mA/g is retained after 350 cycles. The sloppy low-voltage profile obtained for both the lithium ion and sodium ion cells corresponds to the nanosheet anodes, being soft carbon-like, thereby demonstrating superior cycling stability and safety by avoiding metal plating and dendrite formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. K.S. Goriparti, E. Miele, F.D. Angelis, E.D. Fabrizio, R.P. Zaccaria, and C. Capiglia: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014).

    Article  CAS  Google Scholar 

  2. B. Jache and P. Adelhelm: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 53, 10169 (2014).

    Article  CAS  Google Scholar 

  3. H. Kim, J. Hong, G. Yoon, H. Kim, K. Park, M. Park, W. Yoonc, and K. Kang: Sodium intercalation chemistry in graphite. Energy Environ. Sci. 8, 2963 (2015).

    Article  CAS  Google Scholar 

  4. E. Irisarri, A. Ponrouch, and M.R. Palacin: Review–hard carbon negative electrode materials for sodium-ion batteries. J. Electrochem. Soc. 162, A2476 (2015).

    Article  CAS  Google Scholar 

  5. V. Etacheri, C.N. Hong, and V.G. Pol: Upcycling of packing-peanuts into carbon microsheet anodes for lithium-ion batteries. Environ. Sci. Technol. 49, 11191 (2015).

    Article  CAS  Google Scholar 

  6. M. Gajewska, A. Tata, E. Proniewicz, and M. Molenda: Bio-derived carbon nanostructures for high-performance lithium-ion batteries. Carbon 145, 426 (2019).

    Article  Google Scholar 

  7. D.S. Bin, Y. Li, Y.G. Sun, S.Y. Duan, Y. Lu, J. Ma, A.M. Cao, Y.S. Hu, and L.J. Wan: Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 8, 1800855 (2018).

    Article  Google Scholar 

  8. F. Yang, Z. Zhang, K.D.X. Zhao, W. Chen, Y. Lai, and J. Li: Dopamine derived nitrogen-doped carbon sheets as anode materials for high performance sodium ion batteries. Carbon 91, 88 (2015).

    Article  CAS  Google Scholar 

  9. J. Du, L. Liu, Y. Yu, Z. Hu, B. Liu, and A. Chen: N-doped hollow carbon spheres/sheets composite for electrochemical capacitor. ACS Appl. Mater. Interfaces 10, 40062 (2018).

    Article  CAS  Google Scholar 

  10. X. Xi, D. Wu, L. Han, Y. Yu, Y. Su, W. Tang, and R. Liu: Highly uniform carbon sheets with orientation-adjustable ordered mesopores. ACS Nano 12, 5436 (2018).

    Article  CAS  Google Scholar 

  11. F. Xie, Z. Xu, A.C.S. Jensen, H. Au, Y. Lu, V.A. Peters, A.J. Drew, Y.S. Hu, and M.M. Titirici: Hard-soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 29, 1901072 (2019).

    Article  Google Scholar 

  12. Z. Jian, C. Bommier, L. Luo, Z. Li, W. Wang, C. Wang, P.A. Greaney, and X. Ji: Insights on the mechanism of Na-ion storage in soft carbon anode. Chem. Mater. 29, 2314 (2017).

    Article  CAS  Google Scholar 

  13. Z. Yi, Y. Liang, X. Lei, C. Wang, and J. Sun: Low-temperature synthesis of nanosized disordered carbon spheres as an anode material for lithium ion batteries. Mater. Lett. 61, 4199 (2007).

    Article  CAS  Google Scholar 

  14. H. Hou, X. Qui, W. Wei, Y. Zhang, and X. Ji: Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7, 1602898 (2017).

    Article  Google Scholar 

  15. B. He, W-C. Li, and A-H. Lu: High nitrogen-content carbon nanosheets formed using the Schiff-base reaction in a molten salt medium as efficient anode materials for lithium-ion batteries. J. Mater. Chem. A 3, 579 (2015).

    Article  CAS  Google Scholar 

  16. Y. Guo, W. Liu, R. Wu, and L. Sun: Marine biomass-derived porous carbon sheets with tuneable N-doping content for superior sodium ion storage. ACS Appl. Mater. Interfaces 10, 44 (2018).

    Google Scholar 

  17. A.L.M. Reddy, A. Srivastava, S.R. Gowda, H. Gullapalli, M. Dubey, and P.M. Ajayan: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 6337 (2010).

    Article  CAS  Google Scholar 

  18. R. Mukherjee, A.V. Thomas, A. Krishnamurthy, and N. Koratkar: Photothermally reduced graphene as high-power anodes for lithium ion batteries. ACS Nano 6, 7867 (2012).

    Article  CAS  Google Scholar 

  19. N. Loeffler, D. Bresser, and S. Passerini: Secondary lithium-ion battery anodes: From first commercial batteries to recent research activities. Johnson Matthey Technol. Rev. 59, 34 (2015).

    Article  Google Scholar 

  20. W. Chen, M. Wan, Q. Liu, X. Xiong, F. Yu, and Y. Huang: Heteroatom doped carbon materials: Synthesis, mechanism, and application for sodium ion batteries. Small Methods 3, 1800323 (2018).

    Article  Google Scholar 

  21. J. Wu, Z. Pan, Y. Zhang, B. Wang, and H. Peng: The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. J. Mater. Chem. A 6, 12932 (2018).

    Article  CAS  Google Scholar 

  22. J. Hou, C. Cao, F. Idrees, and X. Ma: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh–capacity battery anodes and supercapacitors. ACS Nano 9, 2556 (2015).

    Article  CAS  Google Scholar 

  23. F. Su, C.K. Poh, J.S. Chen, G. Xu, D. Wang, Q. Li, J. Lin, and X.W. Lou: Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4, 717 (2011).

    Article  CAS  Google Scholar 

  24. X. Wang, Q. Weng, X. Liu, X. Wang, D.M. Tang, W. Tian, C. Zhang, W. Yi, D. Liu, Y. Bando, and D. Golberg: Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett. 14, 1164 (2014).

    Article  CAS  Google Scholar 

  25. C. Ma, X. Shao, and D. Cao: Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: A first-principles study. J. Mater. Chem. 22, 8911 (2012).

    Article  CAS  Google Scholar 

  26. S. Ullah, M.A. Bustam, M. Nadeem, M.Y. Naz, W.L. Tan, and A.M. Shariff: Synthesis and thermal degradation studies of melamine formaldehyde resins. Sci. World J. 2014, 940502 (2014).

    Google Scholar 

  27. M. Li, Y. Zhang, L. Yang, Y. Liu, and J. Yao: Hollow melamine resin-based carbon spheres/graphene composite with excellent performance for supercapacitors. Electrochim. Acta 166, 310 (2015).

    Article  CAS  Google Scholar 

  28. H. Tan, J. Tang, J. Henzie, Y. Li, X. Xu, T. Chen, Z. Wang, J. Wang, Y. Ide, Y. Bando, and Y. Yamauchi: Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano 12, 5674 (2018).

    Article  CAS  Google Scholar 

  29. Z.Y. Sui, C. Wang, Q.S. Yang, K. Shu, Y.W. Liu, B.H. Han, and G.G. Wallace: A highly nitrogen-doped porous graphene—An anode material for lithium ion batteries. J. Mater. Chem. A 3, 18229 (2015).

    Article  CAS  Google Scholar 

  30. W. Luo, Z. Jian, Z. Xing, W. Wang, C. Bommier, M.M. Lerner, and X. Ji: Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent. Sci. 1, 516 (2015).

    Article  CAS  Google Scholar 

  31. W. Zhang, M. Lan, Y. Di, X. Zhu, T. Ng, J. Xia, W. Liu, X. Meng, P. Wang, and C. Lee: Carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism. Chem. Commun. 51, 15574 (2015).

    Article  Google Scholar 

  32. M. Hua, H. Zhoua, X. Gana, L. Yanga, Z-H. Huang, D-W. Wang, F. Kang, and R. Lv: Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte. J. Mater. Chem. A 6, 1582 (2018).

    Article  Google Scholar 

  33. L. Hu, G. Cheng, J. Ren, F. Wang, and J. Ren: Conformal carbon coating on hard carbon anode derived from propionaldehyde for excellent performance of lithium-ion batteries. Int. J. Electrochem. Sci. 14, 2804 (2019).

    Article  CAS  Google Scholar 

  34. K. Kim, T. Lee, H. Kim, S. Lim, and S. Lee: A hard carbon/microcrystalline graphite/carbon composite with a core–shell structure as novel anode materials for lithium-ion batteries. Electrochim. Acta 135, 27 (2014).

    Article  CAS  Google Scholar 

  35. M. Cabello, X. Bai, T. Chyrka, G.F. Ortiz, P. Lavela, R. Alcantara, and J.L. Tirado: On the reliability of sodium co-intercalation in expanded graphite prepared by different methods as anodes for sodium-ion batteries. J. Electrochem. Soc. 164, A3804 (2017).

    Article  CAS  Google Scholar 

  36. H-W. Zhang, J-M. Lu, L. Yang, M-X. Hu, Z-H. Huang, R-T. Lu, and F-Y. Kang: N,S co-doped porous carbon nanospheres with a high cycling stability for sodium ion batteries. New Carbon Mater. 32, 517 (2017).

    Article  Google Scholar 

  37. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, and C. Wang: Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

SD acknowledges the Science and Engineering Research Board for the award of Ramanujan Fellowship (Ref: SB/S2/RJN-100/2014). We are thankful to Amrita Vishwa Vidyapeetham for the financial support for the experimental work and fellowship for AKR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhamodaran Santhanagopalan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhakrishnan, A.K., Nair, S. & Santhanagopalan, D. N-doped carbon nanosheets as high-performance anodes for Li- and Na-ion batteries. Journal of Materials Research 35, 12–19 (2020). https://doi.org/10.1557/jmr.2019.330

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.330

Navigation