Abstract
A series of xLiMn0.5Fe0.5PO4–yLi3V2(PO4)3/C (x:y = 4:1, 3:1, 2:1, 1:1, 1:2, and 1:3) composite cathode materials for lithium-ion batteries are successfully prepared by the rheological phase reaction method. The structures, morphologies, and electrochemical properties of these composite materials are studied. The results indicate that xLiMn0.5Fe0.5PO4–yLi3V2(PO4)3/C composites are composed of LiMn0.5Fe0.5PO4 and Li3V2(PO4)3 phases and mutual doping exists. The initial discharge capacities, initial Coulombic efficiencies, and capacity retentions of composites increase but then decline with the increase of Li3V2(PO4)3 content. All the composites show higher capacity retentions than LiMn0.5Fe0.5PO4/C and Li3V2(PO4)3/C single phases except LMFP–3LVP/C. The composite material of x:y = 1:1 exhibits remarkably superior electrochemical performance than the single phases and other composites both in discharge capacity and cycle performance, delivering the initial discharge capacity of 148.2 mA h/g (2.0–4.5 V) and 170.1 mA h/g (2.0–4.8 V) at 0.1 C. And the corresponding capacity retentions are 98.0 and 90.4% after 100 cycles, respectively.
Similar content being viewed by others
References
M. Armand and J.M. Tarascon: Building better batteries. Nature 451, 652 (2008).
B. Kang and G. Ceder: Battery materials for ultrafast charging and discharging. Nature 458, 190 (2009).
C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.B. Leriche, M. Morcrette, J.M. Tarascon, and C. Masquelier: Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc. 152, A913 (2005).
C.H. Mi, Y.X. Cao, X.G. Zhang, X.B. Zhao, and H.L. Li: Synthesis and characterization of LiFePO4/(Ag + C) composite cathodes with nano-carbon webs. Powder Technol. 181, 301 (2008).
Y. Mizuno, M. Kotobuki, H. Munakata, and K. kanamura: Effect of carbon source on electrochemical performance of carbon coated LiMnPO4 cathode. J. Ceram. Soc. Jpn. 117, 1225 (2009).
A. Boulineau and T. Gutel: Revealing electrochemically induced antisite defects in LiCoPO4: Evolution upon cycling. Chem. Mater. 27, 802 (2015).
P.S. Herle, B. Ellis, N. Coombs, and L.F. Nazar: Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147 (2004).
C. Masquelier, A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough: New cathode materials for rechargeable lithium batteries: The 3-D framework structures Li3Fe2(XO4)3 (X = P, As). J. Solid State Chem. 135, 228 (1998).
N. Plylahan, C. Vidal-Abarca, P. Lavela, and J.L. Tirado: Chromium substitution in ion exchanged Li3Fe2(PO4)3 and the effects on the electrochemical behavior as cathodes for lithium batteries. Electrochim. Acta 62, 124 (2012).
A.R. Cho, J.N. Son, V. Aravindan, H. Kim, K.S. Kang, W.S. Yoon, W.S. Kim, and Y.S. Lee: Carbon supported, Al doped-Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries. J. Mater. Chem. 22, 6556 (2012).
M.M. Ren, Z. Zhou, X.P. Gao, W.X. Peng, and J.P. Wei: Core–shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J. Phys. Chem. C 112, 5689 (2008).
C. Wang, H.M. Liu, and W.S. Yang: An integrated core–shell structured Li3V2(PO4)3@C cathode material of LIBs prepared by a momentary freeze-drying method. J. Mater. Chem. 22, 5281 (2012).
A.Q. Pan, J. Liu, J.G. Zhang, W. Xu, G.Z. Cao, Z.M. Nie, B.W. Arey, and S.Q. Liang: Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries. Electrochem. Commun. 12, 1674 (2010).
J. Su, X.L. Wu, J.S. Lee, J. Kim, and Y.G. Guo: A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. J. Mater. Chem. A 1, 2508 (2013).
D. Choi, D. Wang, I-T. Bae, J. Xiao, Z. Nie, W. Wang, V.V. Viswanathan, Y.J. Lee, J-G. Zhang, G.L. Graff, Z. Yang, and J. Liu: LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett. 10, 2799 (2010).
S.K. Martha, J. Grinblat, O. Haik, E. Zinigrad, T. Drezen, J.H. Miners, I. Exnar, A. Kay, B. Markovsky, and D. Aurbach: LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries. Angew. Chem. 121, 8711 (2009).
H.L. Wang, Y. Yang, Y.Y. Liang, L.F. Cui, H.S. Casalongue, Y.G. Li, G.S. Hong, Y. Cui, and H.J. Dai: LiMn1−xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew. Chem., Int. Ed. 50, 7364 (2011).
S. Xu, X.Y. Lv, Z. Wu, Y.F. Long, J. Su, and Y.X. Wen: Synthesis of porous-hollow LiMn0.85Fe0.15PO4/C microspheres as a cathode material for lithium-ion batteries. Powder Technol. 308, 94 (2017).
S.M. Oh, S.T. Myung, Y.S. Choi, K.H. Oh, and Y.K. Sun: Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries. J. Mater. Chem. 21, 19368 (2011).
K. Saravanan, V. Ramar, P. Balaya, and J.J. Vittal: Li(MnxFe1−x)PO4/C (x = 0.5, 0.75, and 1) nanoplates for lithium storage application. J. Mater. Chem. 21, 14925 (2011).
N. Meethong, H-Y.S. Huang, S.A. Speakman, W.C. Carter, and Y-M. Chiang: Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv. Funct. Mater. 17, 1115 (2007).
L. Wu, J.J. Lu, G. Wei, P.F. Wang, H. Ding, J.W. Zheng, X.W. Li, and S.K. Zhong: Synthesis and electrochemical properties of xLiMn0.9Fe0.1PO4·yLi3V2(PO4)3/C composite cathode materials for lithium-ion batteries. Electrochim. Acta 146, 288 (2014).
L. Chen, B. Yan, H.Y. Wang, X.F. Jiang, and G. Yang: Synthesis and characterization of 0.95LiMn0.95Fe0.05PO4·0.05Li3V2(PO4)3 nanocomposite by sol–gel method. J. Power Sources 287, 316 (2015).
X.Y. Wang, W.T. Tang, X.Y. Hou, C.Y. Gu, and Z. Su: Synthesis and electrochemical properties of a composite LiMn0.63Fe0.37PO4 with Li3V2(PO4)3 for lithium-ion battery cathode materials. Ceram. Int. 42, 15798 (2016).
Y.M. Wang, B. Zhu, X.Y. Liu, and F. Wang: Surfactant-assisted solid-state synthesis of 6LiMn0.8Fe0.2PO4·Li3V2(PO4)3/C nanocomposite for lithium-ion batteries. RSC Adv. 7, 27235 (2017).
Q.Q. Chen, T.T. Zhang, X.C. Qiao, D.Q. Li, and J.W. Yang: Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery. J. Power Sources 234, 197 (2013).
J. Kim, J.K. Yoo, Y.S. Jung, and K. Kang: Li3V2(PO4)3/conducting polymer as a high power 4 V-class lithium battery electrode. Adv. Energy Mater. 3, 1004 (2013).
X.X. Shi, C.X. Chang, J.F. Xiang, Y. Xiao, L.J. Yuan, and J.T. Sun: Synthesis of nanospherical Fe3BO6 anode material for lithium-ion battery by the rheological phase reaction method. J. Solid State Chem. 181, 2231 (2008).
X.Y. Cao and J.J. Zhang: Rheological phase synthesis and characterization of Li3V2(PO4)3/C composites as cathode materials for lithium ion batteries. Electrochim. Acta 129, 305 (2014).
X.X. Shi, C.W. Wang, Y.T. Zhang, Q. Liu, H. Li, D.W. Song, and L.Q. Zhang: Structure and electrochemical behaviors of spherical Li1+xNi0.5Mn0.5O2+δ synthesized by rheological phase reaction method. Electrochim. Acta 150, 89 (2014).
G. Yang, H. Ni, H.D. Liu, P. Gao, H.M. Ji, S. Roy, J. Pinto, and X.F. Jiang: The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M = Mg, V, Fe, Co, Cd). J. Power Sources 196, 4747 (2011).
C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, and J. Yan: Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J. Power Sources 193, 841 (2009).
M. Bini, S. Ferrari, D. Capsoni, and V. Massarotti: Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material. Electrochim. Acta 56, 2648 (2011).
M.M. Ren, Z. Zhou, Y.Z. Li, X.P. Gao, and J. Yan: Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Power Sources 162, 1357 (2006).
B. Qin, Z. Liu, G. Ding, Y. Duan, C. Zhang, and G. Cui: A single-ion gel polymer electrolyte system for improving cycle performance of LiMn2O4 battery at elevated temperatures. Electrochim. Acta 141, 167 (2014).
Acknowledgments
This work was supported by the National Key Research and Development Program of China (2017YFB0102000), NSFC (21503148 and 51502206), Tianjin Sci. & Tech. Program (17YFZCGX00710 and 17YFZCGX00560), and Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2017-05).
Author information
Authors and Affiliations
Corresponding authors
Supplementary Material
Rights and permissions
About this article
Cite this article
Yu, X., Li, Q., Liu, Q. et al. Rheological phase reaction method synthesis and characterizations of xLiMn0.5Fe0.5PO4–yLi3V2(PO4)3/C composites as cathode materials for lithium ion batteries. Journal of Materials Research 35, 2–11 (2020). https://doi.org/10.1557/jmr.2019.326
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2019.326