Skip to main content
Log in

Rheological phase reaction method synthesis and characterizations of xLiMn0.5Fe0.5PO4yLi3V2(PO4)3/C composites as cathode materials for lithium ion batteries

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A series of xLiMn0.5Fe0.5PO4yLi3V2(PO4)3/C (x:y = 4:1, 3:1, 2:1, 1:1, 1:2, and 1:3) composite cathode materials for lithium-ion batteries are successfully prepared by the rheological phase reaction method. The structures, morphologies, and electrochemical properties of these composite materials are studied. The results indicate that xLiMn0.5Fe0.5PO4yLi3V2(PO4)3/C composites are composed of LiMn0.5Fe0.5PO4 and Li3V2(PO4)3 phases and mutual doping exists. The initial discharge capacities, initial Coulombic efficiencies, and capacity retentions of composites increase but then decline with the increase of Li3V2(PO4)3 content. All the composites show higher capacity retentions than LiMn0.5Fe0.5PO4/C and Li3V2(PO4)3/C single phases except LMFP–3LVP/C. The composite material of x:y = 1:1 exhibits remarkably superior electrochemical performance than the single phases and other composites both in discharge capacity and cycle performance, delivering the initial discharge capacity of 148.2 mA h/g (2.0–4.5 V) and 170.1 mA h/g (2.0–4.8 V) at 0.1 C. And the corresponding capacity retentions are 98.0 and 90.4% after 100 cycles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. M. Armand and J.M. Tarascon: Building better batteries. Nature 451, 652 (2008).

    Article  CAS  Google Scholar 

  2. B. Kang and G. Ceder: Battery materials for ultrafast charging and discharging. Nature 458, 190 (2009).

    Article  CAS  Google Scholar 

  3. C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.B. Leriche, M. Morcrette, J.M. Tarascon, and C. Masquelier: Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials. J. Electrochem. Soc. 152, A913 (2005).

    Article  CAS  Google Scholar 

  4. C.H. Mi, Y.X. Cao, X.G. Zhang, X.B. Zhao, and H.L. Li: Synthesis and characterization of LiFePO4/(Ag + C) composite cathodes with nano-carbon webs. Powder Technol. 181, 301 (2008).

    Article  CAS  Google Scholar 

  5. Y. Mizuno, M. Kotobuki, H. Munakata, and K. kanamura: Effect of carbon source on electrochemical performance of carbon coated LiMnPO4 cathode. J. Ceram. Soc. Jpn. 117, 1225 (2009).

    Article  CAS  Google Scholar 

  6. A. Boulineau and T. Gutel: Revealing electrochemically induced antisite defects in LiCoPO4: Evolution upon cycling. Chem. Mater. 27, 802 (2015).

    Article  CAS  Google Scholar 

  7. P.S. Herle, B. Ellis, N. Coombs, and L.F. Nazar: Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 3, 147 (2004).

    Article  CAS  Google Scholar 

  8. C. Masquelier, A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough: New cathode materials for rechargeable lithium batteries: The 3-D framework structures Li3Fe2(XO4)3 (X = P, As). J. Solid State Chem. 135, 228 (1998).

    Article  CAS  Google Scholar 

  9. N. Plylahan, C. Vidal-Abarca, P. Lavela, and J.L. Tirado: Chromium substitution in ion exchanged Li3Fe2(PO4)3 and the effects on the electrochemical behavior as cathodes for lithium batteries. Electrochim. Acta 62, 124 (2012).

    Article  CAS  Google Scholar 

  10. A.R. Cho, J.N. Son, V. Aravindan, H. Kim, K.S. Kang, W.S. Yoon, W.S. Kim, and Y.S. Lee: Carbon supported, Al doped-Li3V2(PO4)3 as a high rate cathode material for lithium-ion batteries. J. Mater. Chem. 22, 6556 (2012).

    Article  CAS  Google Scholar 

  11. M.M. Ren, Z. Zhou, X.P. Gao, W.X. Peng, and J.P. Wei: Core–shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J. Phys. Chem. C 112, 5689 (2008).

    Article  CAS  Google Scholar 

  12. C. Wang, H.M. Liu, and W.S. Yang: An integrated core–shell structured Li3V2(PO4)3@C cathode material of LIBs prepared by a momentary freeze-drying method. J. Mater. Chem. 22, 5281 (2012).

    Article  CAS  Google Scholar 

  13. A.Q. Pan, J. Liu, J.G. Zhang, W. Xu, G.Z. Cao, Z.M. Nie, B.W. Arey, and S.Q. Liang: Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries. Electrochem. Commun. 12, 1674 (2010).

    Article  CAS  Google Scholar 

  14. J. Su, X.L. Wu, J.S. Lee, J. Kim, and Y.G. Guo: A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. J. Mater. Chem. A 1, 2508 (2013).

    Article  CAS  Google Scholar 

  15. D. Choi, D. Wang, I-T. Bae, J. Xiao, Z. Nie, W. Wang, V.V. Viswanathan, Y.J. Lee, J-G. Zhang, G.L. Graff, Z. Yang, and J. Liu: LiMnPO4 nanoplate grown via solid-state reaction in molten hydrocarbon for Li-ion battery cathode. Nano Lett. 10, 2799 (2010).

    Article  CAS  Google Scholar 

  16. S.K. Martha, J. Grinblat, O. Haik, E. Zinigrad, T. Drezen, J.H. Miners, I. Exnar, A. Kay, B. Markovsky, and D. Aurbach: LiMn0.8Fe0.2PO4: An advanced cathode material for rechargeable lithium batteries. Angew. Chem. 121, 8711 (2009).

    Article  Google Scholar 

  17. H.L. Wang, Y. Yang, Y.Y. Liang, L.F. Cui, H.S. Casalongue, Y.G. Li, G.S. Hong, Y. Cui, and H.J. Dai: LiMn1−xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew. Chem., Int. Ed. 50, 7364 (2011).

    Article  CAS  Google Scholar 

  18. S. Xu, X.Y. Lv, Z. Wu, Y.F. Long, J. Su, and Y.X. Wen: Synthesis of porous-hollow LiMn0.85Fe0.15PO4/C microspheres as a cathode material for lithium-ion batteries. Powder Technol. 308, 94 (2017).

    Article  CAS  Google Scholar 

  19. S.M. Oh, S.T. Myung, Y.S. Choi, K.H. Oh, and Y.K. Sun: Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries. J. Mater. Chem. 21, 19368 (2011).

    Article  CAS  Google Scholar 

  20. K. Saravanan, V. Ramar, P. Balaya, and J.J. Vittal: Li(MnxFe1−x)PO4/C (x = 0.5, 0.75, and 1) nanoplates for lithium storage application. J. Mater. Chem. 21, 14925 (2011).

    Article  CAS  Google Scholar 

  21. N. Meethong, H-Y.S. Huang, S.A. Speakman, W.C. Carter, and Y-M. Chiang: Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv. Funct. Mater. 17, 1115 (2007).

    Article  CAS  Google Scholar 

  22. L. Wu, J.J. Lu, G. Wei, P.F. Wang, H. Ding, J.W. Zheng, X.W. Li, and S.K. Zhong: Synthesis and electrochemical properties of xLiMn0.9Fe0.1PO4·yLi3V2(PO4)3/C composite cathode materials for lithium-ion batteries. Electrochim. Acta 146, 288 (2014).

    Article  CAS  Google Scholar 

  23. L. Chen, B. Yan, H.Y. Wang, X.F. Jiang, and G. Yang: Synthesis and characterization of 0.95LiMn0.95Fe0.05PO4·0.05Li3V2(PO4)3 nanocomposite by sol–gel method. J. Power Sources 287, 316 (2015).

    Article  CAS  Google Scholar 

  24. X.Y. Wang, W.T. Tang, X.Y. Hou, C.Y. Gu, and Z. Su: Synthesis and electrochemical properties of a composite LiMn0.63Fe0.37PO4 with Li3V2(PO4)3 for lithium-ion battery cathode materials. Ceram. Int. 42, 15798 (2016).

    Article  CAS  Google Scholar 

  25. Y.M. Wang, B. Zhu, X.Y. Liu, and F. Wang: Surfactant-assisted solid-state synthesis of 6LiMn0.8Fe0.2PO4·Li3V2(PO4)3/C nanocomposite for lithium-ion batteries. RSC Adv. 7, 27235 (2017).

    Article  CAS  Google Scholar 

  26. Q.Q. Chen, T.T. Zhang, X.C. Qiao, D.Q. Li, and J.W. Yang: Li3V2(PO4)3/C nanofibers composite as a high performance cathode material for lithium-ion battery. J. Power Sources 234, 197 (2013).

    Article  CAS  Google Scholar 

  27. J. Kim, J.K. Yoo, Y.S. Jung, and K. Kang: Li3V2(PO4)3/conducting polymer as a high power 4 V-class lithium battery electrode. Adv. Energy Mater. 3, 1004 (2013).

    Article  CAS  Google Scholar 

  28. X.X. Shi, C.X. Chang, J.F. Xiang, Y. Xiao, L.J. Yuan, and J.T. Sun: Synthesis of nanospherical Fe3BO6 anode material for lithium-ion battery by the rheological phase reaction method. J. Solid State Chem. 181, 2231 (2008).

    Article  CAS  Google Scholar 

  29. X.Y. Cao and J.J. Zhang: Rheological phase synthesis and characterization of Li3V2(PO4)3/C composites as cathode materials for lithium ion batteries. Electrochim. Acta 129, 305 (2014).

    Article  CAS  Google Scholar 

  30. X.X. Shi, C.W. Wang, Y.T. Zhang, Q. Liu, H. Li, D.W. Song, and L.Q. Zhang: Structure and electrochemical behaviors of spherical Li1+xNi0.5Mn0.5O2+δ synthesized by rheological phase reaction method. Electrochim. Acta 150, 89 (2014).

    Article  CAS  Google Scholar 

  31. G. Yang, H. Ni, H.D. Liu, P. Gao, H.M. Ji, S. Roy, J. Pinto, and X.F. Jiang: The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M = Mg, V, Fe, Co, Cd). J. Power Sources 196, 4747 (2011).

    Article  CAS  Google Scholar 

  32. C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, and J. Yan: Improved high-rate charge/discharge performances of LiFePO4/C via V-doping. J. Power Sources 193, 841 (2009).

    Article  CAS  Google Scholar 

  33. M. Bini, S. Ferrari, D. Capsoni, and V. Massarotti: Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material. Electrochim. Acta 56, 2648 (2011).

    Article  CAS  Google Scholar 

  34. M.M. Ren, Z. Zhou, Y.Z. Li, X.P. Gao, and J. Yan: Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Power Sources 162, 1357 (2006).

    Article  CAS  Google Scholar 

  35. B. Qin, Z. Liu, G. Ding, Y. Duan, C. Zhang, and G. Cui: A single-ion gel polymer electrolyte system for improving cycle performance of LiMn2O4 battery at elevated temperatures. Electrochim. Acta 141, 167 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2017YFB0102000), NSFC (21503148 and 51502206), Tianjin Sci. & Tech. Program (17YFZCGX00710 and 17YFZCGX00560), and Young Elite Scientists Sponsorship Program by Tianjin (TJSQNTJ-2017-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xixi Shi or Lianqi Zhang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Li, Q., Liu, Q. et al. Rheological phase reaction method synthesis and characterizations of xLiMn0.5Fe0.5PO4yLi3V2(PO4)3/C composites as cathode materials for lithium ion batteries. Journal of Materials Research 35, 2–11 (2020). https://doi.org/10.1557/jmr.2019.326

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.326

Navigation