Skip to main content

Advertisement

Log in

NiSx@MoS2 heterostructure prepared by atomic layer deposition as high-performance hydrogen evolution reaction electrocatalysts in alkaline media

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Developing low-cost and high-performance hydrogen evolution reaction (HER) electrocatalysts is essential for the development of hydrogen energy. While transition metal sulfides are reported as promising HER electrocatalysts, their performance still requires further improvement for practical application. In this work, we report a strategy to construct NiSx@MoS2 heterostructures with a well-defined interface structure by growing NiSx nanoclusters on MoS2 nanosheets through atomic layer deposition (ALD). NiSx@MoS2 heterostructures exhibit strongly enhanced HER activity with lower overpotential and faster reaction dynamic compared to MoS2 and NiSx single phases. The enhanced performance is attributed to improved adsorption of the reaction intermediates and the facilitated charge transfer process near the MoS2/NiSx interfaces. Besides high activity, NiSx@MoS2 heterostructures also exhibit high stability in alkaline media. The methodology and knowledge in this work can guide the rational design of high-performance electrocatalysts through hetero-interface engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. S. Anantharaj, S.R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, and S. Kundu: Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catal. 6, 8069–8097 (2016).

    Article  CAS  Google Scholar 

  2. Y. Yang, H. Yao, Z. Yu, S.M. Islam, H. He, M. Yuan, Y. Yue, K. Xu, W. Hao, G. Sun, H. Li, S. Ma, P. Zapol, and M.G. Kanatzidis: Hierarchical nanoassembly of MoS2/Co9S8/Ni3S2/Ni as a highly efficient electrocatalyst for overall water splitting in a wide pH range. J. Am. Chem. Soc. 141, 10417–10430 (2019).

    Article  CAS  Google Scholar 

  3. J. Lin, P. Wang, H. Wang, C. Li, X. Si, J. Qi, J. Cao, Z. Zhong, W. Fei, and J. Feng: Defect-rich heterogeneous MoS2/NiS2 nanosheets electrocatalysts for efficient overall water splitting. Adv. Sci. 6, 1900246 (2019).

    Article  CAS  Google Scholar 

  4. Q. Zhang, W. Wang, J. Zhang, X. Zhu, Q. Zhang, Y. Zhang, Z. Ren, S. Song, J. Wang, Z. Ying, R. Wang, X. Qiu, T. Peng, and L. Fu: Highly efficient photocatalytic hydrogen evolution by ReS2 via a two-electron catalytic reaction. Adv. Mater. 30, e1707123 (2018).

    Article  CAS  Google Scholar 

  5. Y. Wu, X. Liu, D. Han, X. Song, L. Shi, Y. Song, S. Niu, Y. Xie, J. Cai, S. Wu, J. Kang, J. Zhou, Z. Chen, X. Zheng, X. Xiao, and G. Wang: Electron density modulation of NiCo2S4 nanowires by nitrogen incorporation for highly efficient hydrogen evolution catalysis. Nat. Commun. 9, 1425 (2018).

    Article  CAS  Google Scholar 

  6. Z. Xiao, Y. Wang, Y-C. Huang, Z. Wei, C-L. Dong, J. Ma, S. Shen, Y. Li, and S. Wang: Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 10, 2563–2569 (2017).

    Article  CAS  Google Scholar 

  7. H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, and Y. Wang: In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 137, 2688–2694 (2015).

    Article  CAS  Google Scholar 

  8. Y. Zhu, X. Liu, S. Jin, H. Chen, W. Lee, M. Liu, and Y. Chen: Anionic defect engineering of transition metal Xxides for oxygen reduction and evolution reactions. J. Mater. Chem. A 7, 5875–5897 (2019).

    Article  CAS  Google Scholar 

  9. Y. Zhu, L. Zhang, B. Zhao, H. Chen, X. Liu, R. Zhao, X. Wang, J. Liu, Y. Chen, and M. Liu: Improving the activity for oxygen evolution reaction by tailoring oxygen defects in double perovskite oxides. Adv. Funct. Mater. 29, 1901783 (2019).

    Article  CAS  Google Scholar 

  10. X. Liu, L. Zhang, Y. Zheng, Z. Guo, Y. Zhu, H. Chen, F. Li, P. Liu, B. Yu, X. Wang, J. Liu, Y. Chen, and M. Liu: Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films. Adv. Sci. 6, 1801898 (2019).

    Article  CAS  Google Scholar 

  11. Y. Zang, S. Niu, Y. Wu, X. Zheng, J. Cai, J. Ye, Y. Xie, Y. Liu, J. Zhou, J. Zhu, X. Liu, G. Wang, and Y. Qian: Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat. Commun. 10, 1217 (2019).

    Article  CAS  Google Scholar 

  12. Y. Chen, S. Huang, X. Ji, K. Adepalli, K. Yin, X. Ling, X. Wang, J. Xue, M. Dresselhaus, J. Kong, and B. Yildiz: Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano 12, 2569–2579 (2018).

    Article  CAS  Google Scholar 

  13. Z. He, R. Zhao, X. Chen, H. Chen, Y. Zhu, H. Su, S. Huang, J. Xue, J. Dai, S. Cheng, M. Liu, X. Wang, and Y. Chen: Defect engineering in single-layer MoS2 using heavy ion irradiation. ACS Appl. Mater. Interfaces 10, 42524–42533 (2018).

    Article  CAS  Google Scholar 

  14. L. Li, Z. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, and D. Voiry: Role of sulfur vacancies and undercoordinated Mo regions in MoS2 nanosheets toward the evolution of hydrogen. ACS Nano 13, 6824–6834 (2019).

    Article  CAS  Google Scholar 

  15. C. Tsai, H. Li, S. Park, J. Park, H.S. Han, J.K. Norskov, X. Zheng, and F. Abild-Pedersen: Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat. Commun. 8, 15113 (2017).

    Article  Google Scholar 

  16. H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Norskov, and X. Zheng: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 364 (2016).

    Article  CAS  Google Scholar 

  17. H. Li, M. Du, M.J. Mleczko, A.L. Koh, Y. Nishi, E. Pop, A.J. Bard, and X. Zheng: Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J. Am. Chem. Soc. 138, 5123–5129 (2016).

    Article  CAS  Google Scholar 

  18. W. Xiao, P. Liu, J. Zhang, W. Song, Y.P. Feng, D. Gao, and J. Ding: Dual-functional N dopants in edges and basal plane of MoS2 nanosheets toward efficient and durable hydrogen evolution. Adv. Energy Mater. 7, 1602086 (2017).

    Article  CAS  Google Scholar 

  19. P. Liu, J. Zhu, J. Zhang, P. Xi, K. Tao, D. Gao, and D. Xue: P dopants triggered new basal plane active sites and enlarged interlayer spacing in MoS2 nanosheets toward electrocatalytic hydrogen evolution. ACS Energy Lett. 2, 745–752 (2017).

    Article  CAS  Google Scholar 

  20. Z. Luo, Y. Ouyang, H. Zhang, M. Xiao, J. Ge, Z. Jiang, J. Wang, D. Tang, X. Cao, C. Liu, and W. Xing: Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat. Commun. 9, 2120 (2018).

    Article  CAS  Google Scholar 

  21. T. Sun, J. Wang, X. Chi, Y. Lin, Z. Chen, X. Ling, C. Qiu, Y. Xu, L. Song, W. Chen, and C. Su: Engineering the electronic structure of MoS2 nanorods by N and Mn dopants for ultra-efficient hydrogen production. ACS Catal. 8, 7585–7592 (2018).

    Article  CAS  Google Scholar 

  22. D. Kong, H. Wang, J.J. Cha, M. Pasta, K.J. Koski, J. Yao, and Y. Cui: Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett. 13, 1341–1347 (2013).

    Article  CAS  Google Scholar 

  23. J. Kibsgaard, Z. Chen, B.N. Reinecke, and T.F. Jaramillo: Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963–969 (2012).

    Article  CAS  Google Scholar 

  24. S. Wang, D. Zhang, B. Li, C. Zhang, Z. Du, H. Yin, X. Bi, and S. Yang: Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 8, 1801345 (2018).

    Article  CAS  Google Scholar 

  25. Y. Yin, J. Han, Y. Zhang, X. Zhang, P. Xu, Q. Yuan, L. Samad, X. Wang, Y. Wang, Z. Zhang, P. Zhang, X. Cao, B. Song, and S. Jin: Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J. Am. Chem. Soc. 138, 7965–7972 (2016).

    Article  CAS  Google Scholar 

  26. Z.H. Ibupoto, A. Tahira, P. Tang, X. Liu, J.R. Morante, M. Fahlman, J. Arbiol, M. Vagin, and A. Vomiero: MoSx@nio composite nanostructures: An advanced nonprecious catalyst for hydrogen evolution reaction in alkaline media. Adv. Funct. Mater. 29, 1807562 (2019).

    Article  CAS  Google Scholar 

  27. A. Khalil, Q. Liu, Z. Muhammad, M. Habib, R. Khan, Q. He, Q. Fang, H.T. Masood, Z.U. Rehman, T. Xiang, C.Q. Wu, and L. Song: Synthesis of Ni9S8/MoS2 heterocatalyst for enhanced hydrogen evolution reaction. Langmuir 33, 5148–5153 (2017).

    Article  CAS  Google Scholar 

  28. S. Li, T. Chen, J. Wen, P. Gui, and G. Fang: In situ grown Ni9S8 nanorod/O-MoS2 nanosheet nanocomposite on carbon cloth as a free binder supercapacitor electrode and hydrogen evolution catalyst. Nanotechnology 28, 445407 (2017).

    Article  CAS  Google Scholar 

  29. J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, and X. Feng: Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity. Angew. Chem., Int. Ed. Engl. 55, 6702–6707 (2016).

    Article  CAS  Google Scholar 

  30. R. Zhao and X. Wang: Initial growth and agglomeration during atomic layer deposition of nickel sulfide. Chem. Mater. 31, 445–453 (2019).

    Article  CAS  Google Scholar 

  31. H. Li, Z. Guo, and X. Wang: Atomic-layer-deposited ultrathin Co9S8 on carbon nanotubes: an efficient bifunctional electrocatalyst for oxygen evolution/reduction reactions and rechargeable Zn–air batteries. J. Mater. Chem. A 5, 21353–21361 (2017).

    Article  CAS  Google Scholar 

  32. X. Wang, O.I. Saadat, B. Xi, X. Lou, R.J. Molnar, T. Palacios, and R.G. Gordon: Atomic layer deposition of Sc2O3 for passivating AlGaN/GaN high electron mobility transistor devices. Appl. Phys. Lett. 101, 232109 (2012).

    Article  CAS  Google Scholar 

  33. X. Wang, L. Dong, J. Zhang, Y. Liu, P.D. Ye, and R.G. Gordon: Heteroepitaxy of La2O3 and La(2−x)Y(x)O3 on GaAs(111)A by atomiclayer deposition: Achieving low interface trap density. Nano Lett. 13, 594–599 (2013).

    Article  CAS  Google Scholar 

  34. Q. Sheng, L. Wang, C. Wang, X. Wang, and J. Xue: Fabrication of nanofluidic diodes with polymer nanopores modified by atomic layer deposition. Biomicrofluidics 8, 052111 (2014).

    Article  CAS  Google Scholar 

  35. Y. Su, S. Cui, Z. Zhuo, W. Yang, X. Wang, and F. Pan: Enhancing the high-voltage cycling performance of LiNi(0.5)Mn(0.3)Co(0.2)O2 by retarding its interfacial reaction with an electrolyte by atomic-layer-deposited Al2O3. ACS Appl. Mater. Interfaces 7, 25105–25112 (2015).

    Article  CAS  Google Scholar 

  36. C. Wang, Q. Fu, X. Wang, D. Kong, Q. Sheng, Y. Wang, Q. Chen, and J. Xue: Atomic layer deposition modified track-etched conical nanochannels for protein sensing. Anal. Chem. 87, 8227–8233 (2015).

    Article  CAS  Google Scholar 

  37. Y. Gao, Y. Shao, L. Yan, H. Li, Y. Su, H. Meng, and X. Wang: Efficient charge injection in organic field-effect transistors enabled by low-temperature atomic layer deposition of ultrathin VOx interlayer. Adv. Funct. Mater. 26, 4456–4463 (2016).

    Article  CAS  Google Scholar 

  38. X. Lou, H. Zhou, S.B. Kim, S. Alghamdi, X. Gong, J. Feng, X. Wang, P.D. Ye, and R.G. Gordon: Epitaxial growth of MgxCa1xO on GaN by atomic layer deposition. Nano Lett. 16, 7650–7654 (2016).

    Article  CAS  Google Scholar 

  39. Y. Su, C. Xin, Y. Feng, Q. Lin, X. Wang, J. Liang, J. Zheng, Y. Lin, and F. Pan: Band alignment for rectification and tunneling effects in Al2O3 atomic-layer-deposited on back contact for CdTe solar cell. ACS Appl. Mater. Interfaces 8, 28143–28148 (2016).

    Article  CAS  Google Scholar 

  40. X. Wang, Z. Guo, Y. Gao, and J. Wang: Atomic layer deposition of vanadium oxide thin films from tetrakis(dimethylamino)vanadium precursor. J. Mater. Res. 32, 37–44 (2016).

    Article  CAS  Google Scholar 

  41. R. Zhao, Y. Gao, Z. Guo, Y. Su, and X. Wang: Interface energy alignment of atomic-layer-deposited VOx on pentacene: An in situ photoelectron spectroscopy investigation. ACS Appl. Mater. Interfaces 9, 1885–1890 (2017).

    Article  CAS  Google Scholar 

  42. Y. Gao, Y. Shi, H. Meng, and X. Wang: Onset voltage shift in the organic thin-film transistor with an atomic-layer-deposited charge-injection interlayer. Org. Electron. 62, 248–252 (2018).

    Article  CAS  Google Scholar 

  43. H. Li, Y. Gao, Y. Shao, Y. Su, and X. Wang: Vapor-phase atomic layer deposition of Co9S8 and its application for supercapacitors. Nano Lett. 15, 6689–6695 (2015).

    Article  CAS  Google Scholar 

  44. H. Li, Y. Shao, Y. Su, Y. Gao, and X. Wang: Vapor-phase atomic layer deposition of nickel sulfide and its application for efficient oxygen-evolution electrocatalysis. Chem. Mater. 28, 1155–1164 (2016).

    Article  CAS  Google Scholar 

  45. Y. Shao, Z. Guo, H. Li, Y. Su, and X. Wang: Atomic layer deposition of iron sulfide and its application as a catalyst in the hydrogenation of azobenzenes. Angew Chem. Int. Ed. Engl. 56, 3226–3231 (2017).

    Article  CAS  Google Scholar 

  46. W. Xiong, Z. Guo, H. Li, R. Zhao, and X. Wang: Rational bottom-up engineering of electrocatalysts by atomic layer deposition: A case study of FexCo1xSy-based catalysts for electrochemical hydrogen evolution. ACS Energy Lett 2, 2778–2785 (2017).

    Article  CAS  Google Scholar 

  47. Z. Guo and X. Wang: Atomic layer deposition of the metal pyrites FeS2, CoS2, and NiS2. Angew. Chem., Int. Ed. Engl. 57, 5898–5902 (2018).

    Article  CAS  Google Scholar 

  48. J. Wang, Z. Guo, W. Xiong, and X. Wang: Synthesis of thin-film metal pyrites by an atomic layer deposition approach. Chemistry 24, 18568–18574 (2018).

    Article  CAS  Google Scholar 

  49. R. Zhao, Z. Guo, and X. Wang: Surface chemistry during atomic-layer deposition of nickel sulfide from nickel amidinate and H2S. J. Phys. Chem. C 122, 21514–21520 (2018).

    Article  CAS  Google Scholar 

  50. Q. Wa, W. Xiong, R. Zhao, Z. He, Y. Chen, and X. Wang: Nanoscale Ni(OH)x films on carbon cloth prepared by atomic layer deposition and electrochemical activation for glucose sensing. ACS Appl. Nano Mater 2, 4427–4434 (2019).

    Article  CAS  Google Scholar 

  51. X. Meng, X. Wang, D. Geng, C. Ozgit-Akgun, N. Schneider, and J.W. Elam: Atomic layer deposition for nanomaterial synthesis and functionalization in energy technology. Mater. Horiz. 4, 133–154 (2017).

    Article  CAS  Google Scholar 

  52. J. Xie, J. Zhang, S. Li, F. Grote, X. Zhang, H. Zhang, R. Wang, Y. Lei, B. Pan, and Y. Xie: Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 135, 17881–17888 (2013).

    Article  CAS  Google Scholar 

  53. B. Zhang, J. Liu, J. Wang, Y. Ruan, X. Ji, K. Xu, C. Chen, H. Wan, L. Miao, and J. Jiang: Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution. Nano Energy 37, 74–80 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (11605063, 51672011, and 11975102), Guangzhou Science and Technology Program General Projects (201707010146), the Fundamental Research Funds for the Central Universities (2018MS40), State Key Laboratory of Pulp and Paper Engineering (2018TS08), Guangdong Pearl River Talent Program (2017GC010281), and Guangdong Innovative and Entrepreneurial Research Team Program (2014ZT05N200) and Natural Science Foundation of Fujian Province (No. 2015J01068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Chen.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Guo, Z., Wa, Q. et al. NiSx@MoS2 heterostructure prepared by atomic layer deposition as high-performance hydrogen evolution reaction electrocatalysts in alkaline media. Journal of Materials Research 35, 822–830 (2020). https://doi.org/10.1557/jmr.2019.325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.325

Navigation