Skip to main content
Log in

Characterization of dynamic and quasistatic compressive mechanical properties of ice-templated alumina–epoxy composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This study investigated the compressive response of ice-templated composites and provides an understanding of their mechanical behavior based on the properties of templated ceramic and epoxy. Results suggested a dependence of properties on the microstructure of the templated porous ceramic, whereas more interestingly composites exhibited catastrophic and progressive types of failure. Compressive strength was found to be markedly greater relative to the strength of templated ceramic and polymer, and irrespective of the failure type, strength was greatly enhanced under dynamic loading relative to quasistatic loading. Compressive strength was also calculated based on the rule of mixtures and mode of failure in ice-templated ceramic. The analysis suggested that the axial mode of failure was not dominant in composites, and failures resulted from the fracture of lamella walls, possibly due to elastic instability. Fragments of the composite specimens were analyzed using scanning electron microscopy to study the fracture characteristics and rationalize the catastrophic and progressive types of failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. U.G.K. Wegst, H. Bai, E. Saiz, A.P. Tomsia, and R.O. Ritchie: Bioinspired structural materials. Nat. Mater. 14, 23 (2015).

    Article  CAS  Google Scholar 

  2. R.O. Ritchie: In pursuit of damage tolerance in engineering and biological materials. MRS Bull. 39, 880 (2014).

    Article  Google Scholar 

  3. S. Acharya and A.K. Mukhopadhyay: Dynamic compressive fracture of ceramic polymer layered composites. Procedia Eng. 86, 281 (2014).

    Article  CAS  Google Scholar 

  4. S. Deville, E. Saiz, R.K. Nalla, and A.P. Tomsia: Freezing as a path to build complex composites. Science 311, 515 (2006).

    Article  CAS  Google Scholar 

  5. M.M. Porter, R. Imperio, M. Wen, M.A. Meyers, and J. McKittrick: Bioinspired scaffolds with varying pore architectures and mechanical properties. Adv. Funct. Mater. 24, 1978 (2014).

    Article  CAS  Google Scholar 

  6. D. Ghosh, N. Dhavale, M. Banda, and H. Kang: A comparison of microstructure and uniaxial compressive response of ice-templated alumina scaffolds fabricated from two different particle sizes. Ceram. Int. 42, 16138 (2016).

    Article  CAS  Google Scholar 

  7. D. Ghosh, H. Kang, M. Banda, and V. Kamaha: Influence of anisotropic grains (platelets) on the microstructure and uniaxial compressive response of ice-templated sintered alumina scaffolds. Acta Mater. 125, 1 (2017).

    Article  CAS  Google Scholar 

  8. D. Ghosh, M. Banda, H. Kang, and N. Dhavale: Platelets-induced stiffening and strengthening of ice-templated highly porous alumina scaffolds. Scr. Mater. 125, 29 (2016).

    Article  CAS  Google Scholar 

  9. S. Deville: Ice-templating, freeze casting: Beyond materials processing. J. Mater. Res. 28, 2202 (2013).

    Article  CAS  Google Scholar 

  10. S. Deville, S. Meille, and J. Seuba: A meta-analysis of the mechanical properties of ice-templated ceramics and metals. Sci. Technol. Adv. Mater. 16, 43501 (2015).

    Article  Google Scholar 

  11. Z. Liu, Y. Zhu, D. Jiao, Z. Weng, Z. Zhang, and R.O. Ritchie: Enhanced protective role in materials with gradient structural orientations: Lessons from Nature. Acta Biomater. 44, 31 (2016).

    Article  Google Scholar 

  12. A. Jumahat, C. Soutis, F.R. Jones, and A. Hodzic: Effect of silica nanoparticles on compressive properties of an epoxy polymer. J. Mater. Sci. 45, 5973 (2010).

    Article  CAS  Google Scholar 

  13. M. Banda and D. Ghosh: Effects of porosity and strain rate on the uniaxial compressive response of ice-templated sintered macroporous alumina. Acta Mater. 149, 179 (2018).

    Article  CAS  Google Scholar 

  14. M. Munro: Evaluated material properties for a sintered alpha-alumina. J. Am. Ceram. Soc. 80, 1919 (1997).

    Article  CAS  Google Scholar 

  15. R.C. Bradt, D.P.H. Haselman, D. Munz, M. Sakai, and V.Y. Sherchenko: Fracture Mechanics of Ceramics (Springer Science & Business Media, Inc., New York, NY, 2005).

    Book  Google Scholar 

  16. J. Lankford: Mechanisms responsible for strain-rate-dependent compressive strength in ceramic materials. J. Am. Ceram. Soc. 64, 33 (1981).

    Article  Google Scholar 

  17. J. Lankford, W.W. Predebon, J.M. Staehler, G. Subhash, B.J. Pletka, and C.E. Anderson: The role of plasticity as a limiting factor in the compressive failure of high strength ceramics. Mech. Mater. 29, 205 (1998).

    Article  Google Scholar 

  18. N.K. Naik, P.J. Shankar, V.R. Kavala, G. Ravikumar, J.R. Pothnis, and H. Arya: High strain rate mechanical behavior of epoxy under compressive loading: Experimental and modeling studies. Mater. Sci. Eng., A 528, 846 (2011).

    Article  Google Scholar 

  19. D. Ghosh, M. Banda, J.E. John, and D.A. Terrones: Dynamic strength enhancement and strain rate sensitivity in ice-templated ceramics processed with and without anisometric particles. Scr. Mater. 154, 236 (2018).

    Article  CAS  Google Scholar 

  20. V.S. Deshpande and N.A. Fleck: High strain rate compressive behaviour of aluminium alloy foams. Int. J. Impact Eng. 24, 277 (2000).

    Article  Google Scholar 

  21. Z. Wang, H. Ma, L. Zhao, and G. Yang: Studies on the dynamic compressive properties of open-cell aluminum alloy foams. Scr. Mater. 54, 83 (2006).

    Article  CAS  Google Scholar 

  22. D.D. Luong, O.M. Strbik, V.H. Hammond, N. Gupta, and K. Cho: Development of high performance lightweight aluminum alloy/SiC hollow sphere syntactic foams and compressive characterization at quasi-static an high strain rates. J. Alloys Compd. 550, 412 (2013).

    Article  CAS  Google Scholar 

  23. J.P. Schramm, M.D. Demetriou, W.L. Johnson, B. Poon, G. Ravichandran, and D. Rittel: Effect of strain rate on the yielding mechanism of amorphous metal foam. Appl. Phys. Lett. 96, 021906 (2010).

    Article  Google Scholar 

  24. D. Ghosh, A. Wiest, and R.D. Conner: Uniaxial quasistatic and dynamic compressive response of foams made from hollow glass microspheres. J. Eur. Ceram. Soc. 36, 781 (2016).

    Article  CAS  Google Scholar 

  25. P.J. Tan, J.J. Harrigan, and S.R. Reid: Inertia effects in uniaxial dynamic compression of a closed cell aluminium alloy foam. Mater. Sci. Technol. 18, 480 (2002).

    Article  CAS  Google Scholar 

  26. P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, and S. Li: Dynamic compressive strength properties of aluminium foams. Part I—Experimental data and observations. J. Mech. Phys. Solids 53, 2174 (2005a).

    Article  CAS  Google Scholar 

  27. P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou, and S. Li: Dynamic compressive strength properties of aluminium foams. Part II—“shock” theory and comparison with experimental data and numerical models. J. Mech. Phys. Solids 53, 2206 (2005b).

    Article  CAS  Google Scholar 

  28. H. Zhao, I. Elnasri, and S. Abdennadher: An experimental study on the behaviour under impact loading of metallic cellular materials. Int. J. Mech. Sci. 47, 757 (2005).

    Article  Google Scholar 

  29. M. Vural and G. Ravichandran: Dynamic response and energy dissipation characteristics of balsa wood: Experiment and analysis. Int. J. Solids Struct. 40, 2147 (2003).

    Article  Google Scholar 

  30. S.R. Reid and C. Peng: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19, 531 (1997).

    Article  Google Scholar 

  31. A. Lichtner, D. Roussel, D. Jauffrès, C.L. Martin, and R.K. Bordia: Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. J. Am. Ceram. Soc. 99, 979 (2016).

    Article  CAS  Google Scholar 

  32. N. Arai and K.T. Faber: Hierarchical porous ceramics via two-stage freeze casting of preceramic polymers. Scr. Mater. 162, 72 (2019).

    Article  CAS  Google Scholar 

  33. G.T. Gray III: Classic Split-Hopkinson pressure bar testing. In ASM Handbook Volume 8—Mechanical Testing and Evaluation (ASM International, Materials Park, OH, 2000); p. 462.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akurati, S., Tennant, N. & Ghosh, D. Characterization of dynamic and quasistatic compressive mechanical properties of ice-templated alumina–epoxy composites. Journal of Materials Research 34, 959–971 (2019). https://doi.org/10.1557/jmr.2019.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.30

Navigation