Skip to main content
Log in

Annealing of LiCoO2 films on flexible stainless steel for thin film lithium batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The LiCoO2 films were directly deposited on stainless steel (SS) using medium-frequency magnetron sputtering, and the effects of annealing parameters, such as ambiences, temperatures, holding times, and heating rates, were systematically compared based on surface morphologies, crystal structures, and electrochemical properties. The results demonstrate that an aerobic atmosphere with 3.5 Pa is the most important parameter to maintain the performance of LiCoO2 films. The influence of the annealing temperature (>550 °C) ranks second because the formed (101) or (104) planes of LiCoO2 facilitate Li+ migration. A short holding time of 20 min and a moderate heating rate of 3 °C/min are selected to reduce the oxidation or inter-diffusion between the LiCoO2 films and the SS substrate. Finally, the optimal annealing process is confirmed and corresponds to the initial discharge capacity of 37.56 µA h/(cm2 µm) and the capacity retention of 83.81% at the 50th cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Y.S. Yoon, C.H. Park, and J.H. Kim: Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries. J. Power Sources 226, 186 (2013).

    Article  CAS  Google Scholar 

  2. H. Castaneda: The impedance response of different mechanisms for LiCoO2/acetylene carbon electrodes in alkaline solutions under polarization conditions. Electrochim. Acta 112, 562 (2013).

    Article  CAS  Google Scholar 

  3. J.F. Ribeiro, R. Sousa, J.A. Sousa, L.M. Goncalves, M.M. Silva, L. Dupont, and J.H. Correia: Flexible thin-film rechargeable lithium battery. In Transducers (IEEE, Barcelona, Spain, 2013); p. 2233.

    Google Scholar 

  4. ID TechEx Ltd.: Flexible, printed and thin film batteries 2019–2029 (2018). Available at: https://www.giiresearch.com/report/ix314818-flexible-printed-thin-film-batteries.html (accessed September 03, 2019).

  5. H.S. Lee, S. Kim, K-B. Kim, and J-W. Choi: Scalable fabrication of flexible thin-film batteries for smart lens applications. Nano Energy 53, 225 (2018).

    Article  CAS  Google Scholar 

  6. Z.M. Yang, G.J. Xing, J. Yang, C.H. Mao, and J. Du: Effects of annealing temperature on structure and electrochemical properties of LiCoO2 cathode thin films. Rare Met. 25, 189 (2006).

    Article  Google Scholar 

  7. Y.S. Yoon, S.H. Lee, S.B. Cho, and S.C. Nam: Influence of two-step heat treatment on sputtered lithium cobalt oxide thin films. J. Electrochem. Soc. 158, A1313 (2011).

    Article  CAS  Google Scholar 

  8. H.K. Kim and Y.S. Yoon: Characteristics of rapid-thermal-annealed LiCoO2 cathode film for an all-solid-state thin film microbattery. J. Vac. Sci. Technol., A 22, 1182 (2004).

    Article  CAS  Google Scholar 

  9. H.Y. Park, S.C. Nam, Y.C. Lim, K.G. Choi, K.C. Lee, G.B. Park, J.B. Kim, H.P. Kim, and S.B. Chao: LiCoO2 thin film cathode fabrication by rapid thermal annealing for micro power sources. Electrochim. Acta 52, 2062 (2007).

    Article  CAS  Google Scholar 

  10. K.F. Chiu, H.H. Hsiao, G.S. Chen, and H.L. Liu: Structural evolution and stability of RF sputter deposited LixMn2−yO4 thin film cathodes. J. Electrochem. Soc. 151, A452 (2004).

    Article  CAS  Google Scholar 

  11. W.S. Kim: Characteristics of LiCoO2 thin film cathodes according to the annealing ambient for the post-annealing process. J. Power Sources 134, 103 (2004).

    Article  CAS  Google Scholar 

  12. S.W. Jeon, J.K. Lim, S.M. Lim, and S.M. Lee: As-deposited LiCoO2 thin film cathodes prepared by rf magnetron sputtering. Electrochim. Acta 51, 268 (2005).

    Article  CAS  Google Scholar 

  13. P. Fragnaud, R. Nagarahan, D.M. Schleich, and D. Vujic: Thin-film cathodes for secondary lithium batteries. J. Power Sources 54, 362 (1995).

    Article  CAS  Google Scholar 

  14. Y.S. Kang, H. Lee, Y.M. Kang, P.S. Lee, and J.Y. Lee: Crystallization of lithium cobalt oxide thin films by radio-frequency plasma irradiation. J. Appl. Phys. 90, 5940 (2001).

    Article  CAS  Google Scholar 

  15. Y.S. Kang, H. Lee, S.C. Park, P.S. Lee, and J.Y. Lee: Plasma treatments for the low temperature crystallization of LiCoO2 thin films. J. Electrochem. Soc. 148, A1254 (2001).

    Article  CAS  Google Scholar 

  16. British Stainless Steel Association: Heat tint (temper) colors on stainless steel surfaces heated in air (2016). Available at: https://www.bssa.org.uk/topics.php?article=140 (accessed September 03, 2019).

  17. R. Seveno, P. Limousin, D. Averty, J-L. Chartier, R.L. Bihan, and H.W. Gundel: Preparation of multi-coating PZT thick films by sol–gel method onto stainless steel substrates. J. Eur. Ceram. Soc. 20, 253 (2000).

    Article  Google Scholar 

  18. G.B. Kale, R.V. Patil, and P.S. Gawade: Interdiffusion studies in titanium–304 stainless steel system. J. Nucl. Mater. 257, 44 (1998).

    Article  CAS  Google Scholar 

  19. K-T. Jung, G-B. Cho, K-W. Kim, T-H. Nam, H-M. Jeong, S-C. Huh, H-S. Chung, and J-P. Noh: Influence of the substrate texture on the structural and electrochemical properties of sputtered LiCoO2 thin films. Thin Solid Films 546, 414 (2013).

    Article  CAS  Google Scholar 

  20. K. Kushida, K. Kuriyama, and J. Cryst: Sol–gel growth of LiCoO2 films on Si substrates by a spin-coating method. J. Cryst. Growth 237–239, 612 (2002).

    Article  Google Scholar 

  21. C-T. Ni and K-Z. Fung: Fabrication of LiCoO2 thin films on flexible stainless steel substrate for lithium ion batteries. Solid State Ionics 179, 1230 (2008).

    Article  CAS  Google Scholar 

  22. J.P. Noh, G.B. Cho, K.T. Jung, W.G. Kang, C.W. Ha, H.J. Ahn, T.H. Nam, and K.W. Kim: Fabrication of LiCoO2 thin film cathodes by DC magnetron sputtering method. Mater. Res. Bull. 47, 2823 (2012).

    Article  CAS  Google Scholar 

  23. M. Okubo, E. Hosono, T. Kudo, H.S. Zhou, and I. Honma: Phonon confinement effect on nano-crystalline LiCoO2 studied with Raman spectroscopy. J. Phys. Chem. Solids 69, 2911 (2008).

    Article  CAS  Google Scholar 

  24. N.J. Dudney and Y.H. Jang: Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 mm thick LiCoO2. J. Power Sources 119–121, 300 (2003).

    Article  CAS  Google Scholar 

  25. H.Y. Park, S.C. Nam, Y.C. Lim, K.G. Choi, K.C. Lee, G.B. Park, H.P. Kim, and S.B. Cho: Influence of sputtering gas pressure on the LiCoO2 thin film cathode post-annealed at 400 °C. Korean J. Chem. Eng. 23, 832 (2006).

    Article  CAS  Google Scholar 

  26. H.K. Kim, T.Y. Seong, and Y.S. Yoon: Characteristics of rapid-thermal-annealed LiN1−xCoxO2 cathode film for all-solid-state rechargeable thin film micro-batteries. Thin Solid Films 447–448, 619 (2004).

    Article  CAS  Google Scholar 

  27. Y.G. Chung, H.Y. Park, S.H. Oh, and D.Y. Yoon: Structural and electrochemical properties of LiNi0.7Co0.15Mn0.15O2 thin film prepared by high frequency hybrid direct current and ratio frequency magnetron sputtering. J. Electroceram. 31, 316 (2013).

    Article  CAS  Google Scholar 

  28. K.Z. Fung, C.T. Ni, S.Y. Tsai, M.H. Chen, A.F. Orliukas, and G. Bajars: Nanostructured LiCoO2 cathode by hydrothermal process. ACS 23–34, 35 (2014).

    Google Scholar 

  29. T. Brousse, P. Fragnaud, and D.R. Marchand: Characterization of sprayed and sputter deposited LiCoO2 thin films for rechargeable microbatteries. J. Power Sources 2, 398 (1996).

    CAS  Google Scholar 

  30. I.M. Peterson and T.Y. Tien: Effect of the grain boundary thermal expansion coefficient on the fracture toughness in silicon nitride. J. Am. Ceram. Soc. 78, 2345 (1995).

    Article  CAS  Google Scholar 

  31. J.C. Dupi, D. Gonbeau, I. Martin-Litas, P. Binatier, and A. Levasseur: Lithium intercalation/deintercalation in transition metal oxides investigated by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 120, 55 (2001).

    Article  Google Scholar 

  32. S.B. Tang, L. Lu, and M.O. Lai: Characterization of a LiCoO2 thin film cathode grown by pulsed laser deposition. Philos. Mag. 85, 2831 (2005).

    Article  CAS  Google Scholar 

  33. D. Magnfalt, A. Fillon, and R.D. Boyd: Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films. J. Appl. Phys. 119, 055305 (2016).

    Article  CAS  Google Scholar 

  34. E. Chason: A kinetic analysis of residual stress evolution in polycrystalline thin films. Thin Solid Films 526, 1 (2012).

    Article  CAS  Google Scholar 

  35. L.E. Koutsokeras and G. Abadias: Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ X-ray diffraction technique. J. Appl. Phys. 111, 093509 (2012).

    Article  CAS  Google Scholar 

  36. S.J. Zhou, W. Wu, and T.M. Shao: Effect of post deposition annealing on residual stress stability of gold films. Surf. Coat. Technol. 304, 222 (2016).

    Article  CAS  Google Scholar 

  37. E. Chason and P.R. Guduru: Tutorial: Understanding residual stress in polycrystalline thin films through real-time measurements and physical models. J. Appl. Phys. 119, 191101 (2016).

    Article  CAS  Google Scholar 

  38. E. Cheng, N. Talot, and J. Wolfenstine: Elastic properties of lithium cobalt oxide (LiCoO2). J. Asian Ceram. Soc. 5, 13 (2017).

    Article  Google Scholar 

  39. Y. Zhang, C. Chung, and M. Zhu: Growth of HT-LiCoO2 thin films on Pt-metalized silicon substrates. Rare Met. 27, 266 (2008).

    Article  CAS  Google Scholar 

  40. W.G. Choi and S.G. Yoon: Improvement of electrochemical properties in LiCoO2 cathode films grown on Pt/TiO2/SiO2/SiPt/TiO2/SiO2/Si substrates by liquid-delivery metalorganic chemical vapor deposition. J. Vac. Sci. Technol., A 22, 2356 (2004).

    Article  CAS  Google Scholar 

  41. H. Xia, L. Lu, Y.S. Meng, and G. Gender: Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J. Electrochem. Soc. 154, A337 (2007).

    Article  CAS  Google Scholar 

  42. T.W. Kang and T.W. Kim: Structural properties of TiN films grown on stainless steel substrates by a reactive radio-frequency sputtering technique at low temperature. Appl. Surf. Sci. 150, 190 (1990).

    Article  Google Scholar 

  43. Y.M. Choi, S.I. Pyun, J.S. Bae, and S.I. Moon: Effect of lithium content on the electrochemical lithium intercalation reaction into LiNiO2 and LiCoO2 electrodes. J. Power Sources 56, 25 (1995).

    Article  CAS  Google Scholar 

  44. G.G. Amatucci, J.M. Tarascon, D. Larcher, and L.C. Klein: Synthesis of electrochemically active LiCoO2 and LiNiO2 at 100 °C. Solid State Ionics 84, 169 (1996).

    Article  CAS  Google Scholar 

  45. M. Yoshio, H. Tanaka, K. Tominaga, and H. Noguchi: Synthesis of LiCoO2 from cobalt-organic acid complexes and its electrode behavior in a lithium secondary battery. J. Power Sources 40, 347 (1992).

    Article  CAS  Google Scholar 

  46. J.W. Qian, L. Liu, J.X. Yang, S.Y. Li, X. Wang, H.L. Zhuang, and Y.Y. Lu: Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun. 9, 4918 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant Nos. 21603204 and 51702305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Chen, M., Yan, Y. et al. Annealing of LiCoO2 films on flexible stainless steel for thin film lithium batteries. Journal of Materials Research 35, 31–41 (2020). https://doi.org/10.1557/jmr.2019.299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.299

Navigation