Abstract
The LiCoO2 films were directly deposited on stainless steel (SS) using medium-frequency magnetron sputtering, and the effects of annealing parameters, such as ambiences, temperatures, holding times, and heating rates, were systematically compared based on surface morphologies, crystal structures, and electrochemical properties. The results demonstrate that an aerobic atmosphere with 3.5 Pa is the most important parameter to maintain the performance of LiCoO2 films. The influence of the annealing temperature (>550 °C) ranks second because the formed (101) or (104) planes of LiCoO2 facilitate Li+ migration. A short holding time of 20 min and a moderate heating rate of 3 °C/min are selected to reduce the oxidation or inter-diffusion between the LiCoO2 films and the SS substrate. Finally, the optimal annealing process is confirmed and corresponds to the initial discharge capacity of 37.56 µA h/(cm2 µm) and the capacity retention of 83.81% at the 50th cycle.
Similar content being viewed by others
References
Y.S. Yoon, C.H. Park, and J.H. Kim: Lattice orientation control of lithium cobalt oxide cathode film for all-solid-state thin film batteries. J. Power Sources 226, 186 (2013).
H. Castaneda: The impedance response of different mechanisms for LiCoO2/acetylene carbon electrodes in alkaline solutions under polarization conditions. Electrochim. Acta 112, 562 (2013).
J.F. Ribeiro, R. Sousa, J.A. Sousa, L.M. Goncalves, M.M. Silva, L. Dupont, and J.H. Correia: Flexible thin-film rechargeable lithium battery. In Transducers (IEEE, Barcelona, Spain, 2013); p. 2233.
ID TechEx Ltd.: Flexible, printed and thin film batteries 2019–2029 (2018). Available at: https://www.giiresearch.com/report/ix314818-flexible-printed-thin-film-batteries.html (accessed September 03, 2019).
H.S. Lee, S. Kim, K-B. Kim, and J-W. Choi: Scalable fabrication of flexible thin-film batteries for smart lens applications. Nano Energy 53, 225 (2018).
Z.M. Yang, G.J. Xing, J. Yang, C.H. Mao, and J. Du: Effects of annealing temperature on structure and electrochemical properties of LiCoO2 cathode thin films. Rare Met. 25, 189 (2006).
Y.S. Yoon, S.H. Lee, S.B. Cho, and S.C. Nam: Influence of two-step heat treatment on sputtered lithium cobalt oxide thin films. J. Electrochem. Soc. 158, A1313 (2011).
H.K. Kim and Y.S. Yoon: Characteristics of rapid-thermal-annealed LiCoO2 cathode film for an all-solid-state thin film microbattery. J. Vac. Sci. Technol., A 22, 1182 (2004).
H.Y. Park, S.C. Nam, Y.C. Lim, K.G. Choi, K.C. Lee, G.B. Park, J.B. Kim, H.P. Kim, and S.B. Chao: LiCoO2 thin film cathode fabrication by rapid thermal annealing for micro power sources. Electrochim. Acta 52, 2062 (2007).
K.F. Chiu, H.H. Hsiao, G.S. Chen, and H.L. Liu: Structural evolution and stability of RF sputter deposited LixMn2−yO4 thin film cathodes. J. Electrochem. Soc. 151, A452 (2004).
W.S. Kim: Characteristics of LiCoO2 thin film cathodes according to the annealing ambient for the post-annealing process. J. Power Sources 134, 103 (2004).
S.W. Jeon, J.K. Lim, S.M. Lim, and S.M. Lee: As-deposited LiCoO2 thin film cathodes prepared by rf magnetron sputtering. Electrochim. Acta 51, 268 (2005).
P. Fragnaud, R. Nagarahan, D.M. Schleich, and D. Vujic: Thin-film cathodes for secondary lithium batteries. J. Power Sources 54, 362 (1995).
Y.S. Kang, H. Lee, Y.M. Kang, P.S. Lee, and J.Y. Lee: Crystallization of lithium cobalt oxide thin films by radio-frequency plasma irradiation. J. Appl. Phys. 90, 5940 (2001).
Y.S. Kang, H. Lee, S.C. Park, P.S. Lee, and J.Y. Lee: Plasma treatments for the low temperature crystallization of LiCoO2 thin films. J. Electrochem. Soc. 148, A1254 (2001).
British Stainless Steel Association: Heat tint (temper) colors on stainless steel surfaces heated in air (2016). Available at: https://www.bssa.org.uk/topics.php?article=140 (accessed September 03, 2019).
R. Seveno, P. Limousin, D. Averty, J-L. Chartier, R.L. Bihan, and H.W. Gundel: Preparation of multi-coating PZT thick films by sol–gel method onto stainless steel substrates. J. Eur. Ceram. Soc. 20, 253 (2000).
G.B. Kale, R.V. Patil, and P.S. Gawade: Interdiffusion studies in titanium–304 stainless steel system. J. Nucl. Mater. 257, 44 (1998).
K-T. Jung, G-B. Cho, K-W. Kim, T-H. Nam, H-M. Jeong, S-C. Huh, H-S. Chung, and J-P. Noh: Influence of the substrate texture on the structural and electrochemical properties of sputtered LiCoO2 thin films. Thin Solid Films 546, 414 (2013).
K. Kushida, K. Kuriyama, and J. Cryst: Sol–gel growth of LiCoO2 films on Si substrates by a spin-coating method. J. Cryst. Growth 237–239, 612 (2002).
C-T. Ni and K-Z. Fung: Fabrication of LiCoO2 thin films on flexible stainless steel substrate for lithium ion batteries. Solid State Ionics 179, 1230 (2008).
J.P. Noh, G.B. Cho, K.T. Jung, W.G. Kang, C.W. Ha, H.J. Ahn, T.H. Nam, and K.W. Kim: Fabrication of LiCoO2 thin film cathodes by DC magnetron sputtering method. Mater. Res. Bull. 47, 2823 (2012).
M. Okubo, E. Hosono, T. Kudo, H.S. Zhou, and I. Honma: Phonon confinement effect on nano-crystalline LiCoO2 studied with Raman spectroscopy. J. Phys. Chem. Solids 69, 2911 (2008).
N.J. Dudney and Y.H. Jang: Analysis of thin-film lithium batteries with cathodes of 50 nm to 4 mm thick LiCoO2. J. Power Sources 119–121, 300 (2003).
H.Y. Park, S.C. Nam, Y.C. Lim, K.G. Choi, K.C. Lee, G.B. Park, H.P. Kim, and S.B. Cho: Influence of sputtering gas pressure on the LiCoO2 thin film cathode post-annealed at 400 °C. Korean J. Chem. Eng. 23, 832 (2006).
H.K. Kim, T.Y. Seong, and Y.S. Yoon: Characteristics of rapid-thermal-annealed LiN1−xCoxO2 cathode film for all-solid-state rechargeable thin film micro-batteries. Thin Solid Films 447–448, 619 (2004).
Y.G. Chung, H.Y. Park, S.H. Oh, and D.Y. Yoon: Structural and electrochemical properties of LiNi0.7Co0.15Mn0.15O2 thin film prepared by high frequency hybrid direct current and ratio frequency magnetron sputtering. J. Electroceram. 31, 316 (2013).
K.Z. Fung, C.T. Ni, S.Y. Tsai, M.H. Chen, A.F. Orliukas, and G. Bajars: Nanostructured LiCoO2 cathode by hydrothermal process. ACS 23–34, 35 (2014).
T. Brousse, P. Fragnaud, and D.R. Marchand: Characterization of sprayed and sputter deposited LiCoO2 thin films for rechargeable microbatteries. J. Power Sources 2, 398 (1996).
I.M. Peterson and T.Y. Tien: Effect of the grain boundary thermal expansion coefficient on the fracture toughness in silicon nitride. J. Am. Ceram. Soc. 78, 2345 (1995).
J.C. Dupi, D. Gonbeau, I. Martin-Litas, P. Binatier, and A. Levasseur: Lithium intercalation/deintercalation in transition metal oxides investigated by X-ray photoelectron spectroscopy. J. Electron Spectrosc. Relat. Phenom. 120, 55 (2001).
S.B. Tang, L. Lu, and M.O. Lai: Characterization of a LiCoO2 thin film cathode grown by pulsed laser deposition. Philos. Mag. 85, 2831 (2005).
D. Magnfalt, A. Fillon, and R.D. Boyd: Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films. J. Appl. Phys. 119, 055305 (2016).
E. Chason: A kinetic analysis of residual stress evolution in polycrystalline thin films. Thin Solid Films 526, 1 (2012).
L.E. Koutsokeras and G. Abadias: Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ X-ray diffraction technique. J. Appl. Phys. 111, 093509 (2012).
S.J. Zhou, W. Wu, and T.M. Shao: Effect of post deposition annealing on residual stress stability of gold films. Surf. Coat. Technol. 304, 222 (2016).
E. Chason and P.R. Guduru: Tutorial: Understanding residual stress in polycrystalline thin films through real-time measurements and physical models. J. Appl. Phys. 119, 191101 (2016).
E. Cheng, N. Talot, and J. Wolfenstine: Elastic properties of lithium cobalt oxide (LiCoO2). J. Asian Ceram. Soc. 5, 13 (2017).
Y. Zhang, C. Chung, and M. Zhu: Growth of HT-LiCoO2 thin films on Pt-metalized silicon substrates. Rare Met. 27, 266 (2008).
W.G. Choi and S.G. Yoon: Improvement of electrochemical properties in LiCoO2 cathode films grown on Pt/TiO2/SiO2/SiPt/TiO2/SiO2/Si substrates by liquid-delivery metalorganic chemical vapor deposition. J. Vac. Sci. Technol., A 22, 2356 (2004).
H. Xia, L. Lu, Y.S. Meng, and G. Gender: Phase transitions and high-voltage electrochemical behavior of LiCoO2 thin films grown by pulsed laser deposition. J. Electrochem. Soc. 154, A337 (2007).
T.W. Kang and T.W. Kim: Structural properties of TiN films grown on stainless steel substrates by a reactive radio-frequency sputtering technique at low temperature. Appl. Surf. Sci. 150, 190 (1990).
Y.M. Choi, S.I. Pyun, J.S. Bae, and S.I. Moon: Effect of lithium content on the electrochemical lithium intercalation reaction into LiNiO2 and LiCoO2 electrodes. J. Power Sources 56, 25 (1995).
G.G. Amatucci, J.M. Tarascon, D. Larcher, and L.C. Klein: Synthesis of electrochemically active LiCoO2 and LiNiO2 at 100 °C. Solid State Ionics 84, 169 (1996).
M. Yoshio, H. Tanaka, K. Tominaga, and H. Noguchi: Synthesis of LiCoO2 from cobalt-organic acid complexes and its electrode behavior in a lithium secondary battery. J. Power Sources 40, 347 (1992).
J.W. Qian, L. Liu, J.X. Yang, S.Y. Li, X. Wang, H.L. Zhuang, and Y.Y. Lu: Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries. Nat. Commun. 9, 4918 (2018).
Acknowledgments
The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant Nos. 21603204 and 51702305).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ma, Y., Chen, M., Yan, Y. et al. Annealing of LiCoO2 films on flexible stainless steel for thin film lithium batteries. Journal of Materials Research 35, 31–41 (2020). https://doi.org/10.1557/jmr.2019.299
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2019.299