Skip to main content

Advertisement

Log in

Ultrathin porous g-CN nanosheets fabricated by direct calcination of pre-treated melamine for enhanced photocatalytic performance

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphite nitride carbon nanosheets have received more and more attention toward the photocatalytic research and applications. Ultrathin g-CN nanosheets with porous structure were synthesized successfully by thermal calcination of melamine supramolecular complexes, which was obtained by pre-treating melamine in nitric acid solution at different concentrations (0.5–2 mol/L). Effects of HNO3 pre-treatment on the microstructure of supramolecular complexes were studied. The characteristics of g-CN nanosheets were investigated by X-ray diffractometry, X-ray photoelectron spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The degradation performance for RhB and water splitting hydrogen production performance were used to evaluate the photocatalytic performances of g-CN nanosheets. The morphology and microstructure of HNO3/melamine supramolecular complexes are different from those of melamine precursor due to the better arrangement of the melamine units. Ultrathin porous g-CN nanosheets which possess a thickness of less than 2 nm were successfully prepared by calcination of melamine pre-treated with 1.0 mol/L nitric acid. The g-CN(1.0) nanosheets possess the highest photocatalytic degradation performance and water splitting hydrogen production performance due to the effective separation of photogenerated carriers and high specific surface area providing a large number of active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    CAS  Google Scholar 

  2. J. Wen, J. Xie, X. Chen, and X. Li: A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 391, 72 (2017).

    Article  CAS  Google Scholar 

  3. X. Li, J. Yu, M. Jaroniec, and X. Chen: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019).

    Article  CAS  Google Scholar 

  4. R. Shen, W. Liu, D. Ren, J. Xie, and X. Li: Co1.4Ni0.6P cocatalysts modified metallic carbon black/g-C3N4 nanosheet Schottky heterojunctions for active and durable photocatalytic H2 production. Appl. Surf. Sci. 466, 393 (2019).

    Article  CAS  Google Scholar 

  5. Y. Ren, D. Zeng, and W. Ong: Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review. Chin. J. Catal. 40, 289 (2019).

    Article  CAS  Google Scholar 

  6. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, and M. Antonietti: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2009).

    Article  CAS  Google Scholar 

  7. J. Fu, J. Yu, C. Jiang, and B. Cheng: g-C3N4-Based heterostructured photocatalysts. Adv. Energy Mater. 8, 1701503 (2018).

    Article  Google Scholar 

  8. X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti: Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 131, 1680 (2009).

    Article  CAS  Google Scholar 

  9. Y. Luo, J. Wang, S. Yu, Y. Cao, K. Ma, Y. Pu, W. Zou, and C. Tang: Nonmetal element doped g-C3N4 with enhanced H2 evolution under visible light irradiation. J. Mater. Res. 33, 1268 (2017).

    Article  Google Scholar 

  10. Y.P. Yuan, L.S. Yin, S.W. Cao, L.N. Gu, G.S. Xu, P. Du, H. Chai, and C. Xue: Microwave-assisted heating synthesis: A general and rapid strategy for large-scale production of highly crystalline g-C3N4 with enhanced photocatalytic H2 production. Green Chem. 16, 4663 (2014).

    Article  CAS  Google Scholar 

  11. R. Shen, J. Xie, Q. Xiang, X. Chen, J. Jiang, and X. Li: Ni-based photocatalytic H2-production cocatalysts. Chin. J. Catal. 40, 240 (2019).

    Article  CAS  Google Scholar 

  12. S. Fu, Y. He, Q. Wu, and Y. Wu: Visible-light responsive plasmonic Ag2O/Ag/g-C3N4 nanosheets with enhanced photocatalytic degradation of Rhodamine B. J. Mater. Res. 31, 2252 (2016).

    Article  CAS  Google Scholar 

  13. B. Liu, L. Ye, R. Wang, J. Yang, Y. Zhang, R. Guan, L. Tian, and X. Chen: Phosphorus-doped graphitic carbon nitride nanotubes with amino-rich surface for efficient CO2 capture, enhanced photocatalytic activity, and product selectivity. ACS Appl. Mater. Interfaces 10, 4001 (2018).

    Article  CAS  Google Scholar 

  14. X. Jin, V.V. Balasubramanian, S.T. Selvan, D.P. Sawant, M.A. Chari, G.Q. Lu, and A. Vinu: Highly ordered mesoporous carbon nitride nanoparticles with high nitrogen content: A metal-free basic catalyst. Angew. Chem., Int. Ed. 48, 7884 (2009).

    Article  CAS  Google Scholar 

  15. Q. Liang, Z. Li, X. Yu, Z-H. Huang, F. Kang, and Q-H. Yang: Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 27, 4634 (2015).

    Article  CAS  Google Scholar 

  16. J. Tong, L. Zhang, F. Li, K. Wang, L. Han, and S. Cao: Rapid and high-yield production of g-C3N4 nanosheets via chemical exfoliation for photocatalytic H2 evolution. RSC Adv. 5, 88149 (2015).

    Article  CAS  Google Scholar 

  17. P. Niu, L. Zhang, G. Liu, and H-M. Cheng: Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763 (2012).

    Article  CAS  Google Scholar 

  18. Y. Zheng, Y. Jiao, J. Chen, J. Liu, J. Liang, A. Du, W. Zhang, Z. Zhu, S.C. Smith, M. Jaroniec, G.Q. Lu, and S.Z. Qiao: Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. J. Am. Chem. Soc. 133, 20116 (2011).

    Article  CAS  Google Scholar 

  19. Y-S. Jun, J. Park, S.U. Lee, A. Thomas, W.H. Hong, and G.D. Stucky: Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 52, 11083 (2013).

    Article  CAS  Google Scholar 

  20. T. Jordan, N. Fechler, J. Xu, T.J.K. Brenner, M. Antonietti, and M. Shalom: “Caffeine doping” of carbon/nitrogen-based organic catalysts: Caffeine as a supramolecular edge modifier for the synthesis of photoactive carbon nitride tubes. ChemCatChem 7, 2826 (2015).

    Article  CAS  Google Scholar 

  21. C. Liu, X. Dong, Y. Hao, X. Wang, H. Ma, and X. Zhang: A novel supramolecular preorganization route for improving g-C3N4/g-C3N4 metal-free homojunction photocatalysis. New J. Chem. 41, 11872 (2017).

    Article  CAS  Google Scholar 

  22. N. Xiao, S. Li, S. Liu, B. Xu, Y. Li, Y. Gao, L. Ge, and G. Lu: Novel PtPd alloy nanoparticle-decorated g-C3N4 nanosheets with enhanced photocatalytic activity for H2 evolution under visible light irradiation. Chin. J. Catal. 40, 352 (2019).

    Article  CAS  Google Scholar 

  23. Y. Li, Z. Jin, L. Zhang, and K. Fan: Controllable design of Zn–Ni–P on g-C3N4 for efficient photocatalytic hydrogen production. Chin. J. Catal. 40, 390 (2019).

    Article  CAS  Google Scholar 

  24. K. He, J. Xie, Z. Liu, N. Li, X. Chen, J. Hu, and X. Li: Multi-functional Ni3C Cocatalyst/g-C3N4 nanoheterojunctions for robust photocatalytic H2 evolution under visible light. J. Mater. Chem. A 6, 13110 (2018).

    Article  CAS  Google Scholar 

  25. C. Fan, Q. Feng, G. Xu, J. Lv, Y. Zhang, J. Liu, Y. Qin, and Y. Wu: Enhanced photocatalytic performances of ultrafine g-C3N4 nanosheets obtained by gaseous stripping with wet nitrogen. Appl. Surf. Sci. 427, 730 (2018).

    Article  CAS  Google Scholar 

  26. Y. Kang, Y. Yang, L-C. Yin, X. Kang, L. Wang, G. Liu, and H-M. Cheng: Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv. Mater. 28, 6471 (2016).

    Article  CAS  Google Scholar 

  27. L. Shi, F. Wang, L. Liang, K. Chen, M. Liu, R. Zhu, and J. Sun: In site acid template induced facile synthesis of porous graphitic carbon nitride with enhanced visible-light photocatalytic activity. Catal. Commun. 89, 129 (2017).

    Article  CAS  Google Scholar 

  28. J-S. Shen, Q-G. Cai, Y-B. Jiang, and H-W. Zhang: Anion-triggered melamine based self-assembly and hydrogel. Chem. Commun. 46, 6786 (2010).

    Article  CAS  Google Scholar 

  29. Z. Li, Y. Ma, X. Hu, E. Liu, and J. Fan: Enhanced photocatalytic H2 production over dual-cocatalyst-modified g-C3N4 heterojunctions. Chin. J. Catal. 40, 434 (2019).

    Article  CAS  Google Scholar 

  30. Q. Liang, Z. Li, Z-H. Huang, F. Kang, and Q-H. Yang: Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25, 6885 (2015).

    Article  CAS  Google Scholar 

  31. S.C. Yan, Z.S. Li, and Z.G. Zou: Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25, 10397 (2009).

    Article  CAS  Google Scholar 

  32. Q. Han, B. Wang, J. Gao, Z. Cheng, Y. Zhao, Z. Zhang, and L. Qu: Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10, 2745 (2016).

    Article  CAS  Google Scholar 

  33. Q. Gu, Y. Liao, L. Yin, J. Long, X. Wang, and C. Xue: Template-free synthesis of porous graphitic carbon nitride microspheres for enhanced photocatalytic hydrogen generation with high stability. Appl. Catal., B 165, 503 (2015).

    Article  CAS  Google Scholar 

  34. R.C. Dante, P. Martín-Ramos, A. Correa-Guimaraes, and J. Martín-Gil: Synthesis of graphitic carbon nitride by reaction of melamine and uric acid. Mater. Chem. Phys. 130, 1094 (2011).

    Article  CAS  Google Scholar 

  35. M. Wang, M. Fang, C. Tang, L. Zhang, Z. Huang, Y.G. Liu, and X. Wu: A C3N4/Bi2WO6 organic–inorganic hybrid photocatalyst with a high visible-light-driven photocatalytic activity. J. Mater. Res. 31, 713 (2016).

    Article  CAS  Google Scholar 

  36. Z. Feng, L. Zeng, Y. Chen, Y. Ma, C. Zhao, R. Jin, Y. Lu, Y. Wu, and Y. He: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660 (2017).

    Article  CAS  Google Scholar 

  37. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, and P.M. Ajayan: Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452 (2013).

    Article  CAS  Google Scholar 

  38. Q. Liu, X. Wang, Q. Yang, Z. Zhang, and X. Fang: Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution. Appl. Surf. Sci. 450, 46 (2018).

    Article  CAS  Google Scholar 

  39. G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin, and X. Wang: Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26, 805 (2013).

    Article  Google Scholar 

  40. J. Fang, H. Fan, Z. Zhu, L.B. Kong, and L. Ma: “Dyed” graphitic carbon nitride with greatly extended visible-light-responsive range for hydrogen evolution. J. Catal. 339, 93 (2016).

    Article  CAS  Google Scholar 

  41. M.Z. Rahman, J. Ran, Y. Tang, M. Jaroniec, and S.Z. Qiao: Surface activated carbon nitride nanosheets with optimized electro-optical properties for highly efficient photocatalytic hydrogen production. J. Mater. Chem. A 4, 2445 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the 111 Project “New Materials and Technology for Clean Energy” (B18018) and the Fundamental Research Funds for the Central Universities (JZ2019HGBZ0142).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangqing Xu or Yucheng Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Xu, G., Li, X. et al. Ultrathin porous g-CN nanosheets fabricated by direct calcination of pre-treated melamine for enhanced photocatalytic performance. Journal of Materials Research 34, 3462–3473 (2019). https://doi.org/10.1557/jmr.2019.294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.294

Navigation