Skip to main content
Log in

Role of oligomer structures in the surface chemistry of amidinate metal complexes used for atomic layer deposition of thin films

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The initial steps of the thermal chemistry of Cu(I)-2-(tert-butylimino)-5,5-dimethyl-pyrrolidinate on metal surfaces were characterized using temperature-programmed desorption experiments and density functional theory (DFT). The relative stability of the initial dimer relative to its dissociation on metal surfaces was evaluated. Several molecular desorption temperatures were identified on Ni(110), but all correspond to dimers, either containing the initial Cu ions or after their removal; no monomer was ever detected. DFT calculations also indicated preferential bonding on Cu(110) as a dimer, albeit with a distorted configuration, via the Cu atoms and in registry with the lattice of the substrate. A potential dissociation pathway of the adsorbed dimer was identified involving the partial detachment of the ligands via the scission of one Cu–N bond at the time and migration to adjacent surface sites. This process is accompanied by the reduction of the Cu centers of the metal–organic complex, indicating that it may be the rate-limiting reaction that leads to further fragmentation of the ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. B.C. Gates, M. Flytzani-Stephanopoulos, D.A. Dixon, and A. Katz: Atomically dispersed supported metal catalysts: Perspectives and suggestions for future research. Catal. Sci. Technol. 7, 4259 (2017).

    Article  CAS  Google Scholar 

  2. M.K. Samantaray, E. Pump, A. Bendjeriou-Sedjerari, V. D’Elia, J.D.A. Pelletier, M. Guidotti, R. Psaro, and J-M. Basset: Surface organometallic chemistry in heterogeneous catalysis. Chem. Soc. Rev. 47, 8403 (2018).

    Article  CAS  Google Scholar 

  3. J. Hämäläinen, M. Ritala, and M. Leskelä: Atomic layer deposition of noble metals and their oxides. Chem. Mater. 26, 786 (2014).

    Article  Google Scholar 

  4. R.G. Gordon: ALD precursors and reaction mechanisms, in atomic layer deposition for semiconductors. In Atomic Layer Deposition for Semiconductors, S.C. Hwang, ed. (Springer, Boston, Massachusetts, 2014); p. 15.

    Chapter  Google Scholar 

  5. S.E. Koponen, P.G. Gordon, and S.T. Barry: Principles of precursor design for vapour deposition methods. Polyhedron 108 (Suppl. C), 59 (2016).

    Article  CAS  Google Scholar 

  6. S.T. Barry, A.V. Teplyakov, and F. Zaera: The chemistry of inorganic precursors during the chemical deposition of films on solid surfaces. Acc. Chem. Res. 51, 800 (2018).

    Article  CAS  Google Scholar 

  7. R.G. Gordon, U. Riaz, and D.M. Hoffman: Chemical vapor deposition of aluminum nitride thin films. J. Mater. Res. 7, 1679 (1992).

    Article  CAS  Google Scholar 

  8. A.W. Laubengayer and W.F. Gilliam: The alkyls of the third group elements. I. Vapor phase studies of the alkyls of aluminum, gallium and indium1. J. Am. Chem. Soc. 63, 477 (1941).

    Article  CAS  Google Scholar 

  9. M.A. Malik, P. O’Brien, M. Motevalli, A.C. Jones, and T. Leedham: X-ray crystal structures of bis-2,2,6,6-tetramethylheptane-3,5-dionatolead(II) and bis-2,2-dimethyl-6,6,7,7,8,8,8-heptafluorooctane-3,5-dionatolead(II): Compounds important in the metalorganic chemical vapour deposition (MOCVD) of lead-containing films. Polyhedron 18, 1641 (1999).

    Article  CAS  Google Scholar 

  10. B.S. Lim, A. Rahtu, and R.G. Gordon: Atomic layer deposition of transition metals. Nat. Mater. 2, 749 (2003).

    Article  CAS  Google Scholar 

  11. A. Devi: ‘Old Chemistries’ for new applications: Perspectives for development of precursors for MOCVD and ALD applications. Coord. Chem. Rev. 257, 3332 (2013).

    Article  CAS  Google Scholar 

  12. M. Xu, H. Tiznado, B-C. Kang, M. Bouman, I. Lee, and F. Zaera: Mechanistic details of atomic layer deposition (ALD) processes. J. Korean Phys. Soc. 51, 1063 (2007).

    Article  CAS  Google Scholar 

  13. F. Zaera: The surface chemistry of thin film atomic layer deposition (ALD) processes for electronic device manufacturing. J. Mater. Chem. 18, 3521 (2008).

    Article  CAS  Google Scholar 

  14. Q. Ma, H. Guo, R.G. Gordon, and F. Zaera: Uptake of copper acetamidinate ALD precursors on nickel surfaces. Chem. Mater. 22, 352 (2010).

    Article  CAS  Google Scholar 

  15. Q. Ma, H. Guo, R.G. Gordon, and F. Zaera: Surface chemistry of copper(I) acetamidinates in connection with atomic layer deposition (ALD) processes. Chem. Mater. 23, 3325 (2011).

    Article  CAS  Google Scholar 

  16. T. Kim, Y. Yao, J.P. Coyle, S.T. Barry, and F. Zaera: Thermal chemistry of Cu(I)-iminopyrrolidinate and Cu(I)-guanidinate atomic layer deposition (ALD) precursors on Ni(110) single-crystal surfaces. Chem. Mater. 25, 3630 (2013).

    Article  CAS  Google Scholar 

  17. Y. Yao, J.P. Coyle, S.T. Barry, and F. Zaera: Thermal decomposition of copper iminopyrrolidinate atomic layer deposition (ALD) precursors on silicon oxide surfaces. J. Phys. Chem. C 120, 14149 (2016).

    Article  CAS  Google Scholar 

  18. Y. Yao and F. Zaera: Thermal chemistry of copper acetamidinate atomic layer deposition precursors on silicon oxide surfaces studied by XPS. J. Vac. Sci. Technol., A 34, 01A101 (2016).

    Article  Google Scholar 

  19. B. Chen, Y. Duan, Y. Yao, Q. Ma, J.P. Coyle, S.T. Barry, A.V. Teplyakov, and F. Zaera: Activation of the dimers and tetramers of metal amidinate atomic layer deposition precursors upon adsorption on silicon oxide surfaces. J. Vac. Sci. Technol., A 35, 01B124 (2017).

    Article  Google Scholar 

  20. Y. Yao, J.P. Coyle, S.T. Barry, and F. Zaera: Effect of the nature of the substrate on the surface chemistry of atomic layer deposition precursors. J. Chem. Phys. 146, 052806 (2017).

    Article  Google Scholar 

  21. B. Chen, J.P. Coyle, S.T. Barry, and F. Zaera: Rational design of metalorganic complexes for the deposition of solid films: Growth of metallic copper with amidinate precursors. Chem. Mater. 31, 1681 (2019).

    Article  CAS  Google Scholar 

  22. J. Guerrero-Sánchez, N. Takeuchi, and F. Zaera: Density functional theory study of the surface adsorption and dissociation of copper(I) acetamidinates on Cu(110) surfaces. J. Phys. Chem. C 123, 4341 (2019).

    Article  Google Scholar 

  23. H. Tiznado, M. Bouman, B.C. Kang, I. Lee, and F. Zaera: Mechanistic details of atomic layer deposition (ALD) processes for metal nitride film growth. J. Mol. Catal. A: Chem. 281, 35 (2008).

    Article  CAS  Google Scholar 

  24. F. Zaera: The surface chemistry of atomic layer depositions of solid thin films. J. Phys. Chem. Lett. 3, 1301 (2012).

    Article  CAS  Google Scholar 

  25. F. Zaera: Mechanisms of surface reactions in thin solid film chemical deposition processes. Coord. Chem. Rev. 257, 3177 (2013).

    Article  CAS  Google Scholar 

  26. K. Christmann, O. Schober, G. Ertl, and M. Neumann: Adsorption of hydrogen on nickel single crystal surfaces. J. Chem. Phys. 60, 4528 (1974).

    Article  CAS  Google Scholar 

  27. M. Bouman and F. Zaera: The surface chemistry of atomic layer deposition (ALD) processes for metal nitride and metal oxide film growth. ECS Trans. 33, 291 (2010).

    Article  CAS  Google Scholar 

  28. M. Bouman and F. Zaera: Reductive eliminations from amido metal complexes: Implications for metal film deposition. J. Electrochem. Soc. 158, D524 (2011).

    Article  CAS  Google Scholar 

  29. Z. Li, S.T. Barry, and R.G. Gordon: Synthesis and characterization of copper(I) amidinates as precursors for atomic layer deposition (ALD) of copper metal. Inorg. Chem. 44, 1728 (2005).

    Article  CAS  Google Scholar 

  30. T.J.J. Whitehorne, J.P. Coyle, A. Mahmood, W.H. Monillas, G.P.A. Yap, and S.T. Barry: Group 11 amidinates and guanidinates: Potential precursors for vapour deposition. Eur. J. Inorg. Chem. 2011, 3240 (2011).

    Article  CAS  Google Scholar 

  31. F.T. Edelmann: Chapter two—Recent progress in the chemistry of metal amidinates and guanidinates: Syntheses, catalysis and materials, in advances in organometallic chemistry. In Advances in Organometallic Chemistry, Vol. 61, F.H. Anthony and J.F. Mark, eds. (Academic Press, Amsterdam, 2013); p. 55.

    Google Scholar 

  32. J.P. Coyle, A. Kurek, P.J. Pallister, E.R. Sirianni, G.P.A. Yap, and S.T. Barry: Preventing thermolysis: Precursor design for volatile copper compounds. Chem. Commun. 48, 10440 (2012).

    Article  CAS  Google Scholar 

  33. Q. Ma, F. Zaera, and R.G. Gordon: Thermal chemistry of copper(I)-N,N’-di-sec-butylacetamidinate on Cu(110) single-crystal surfaces. J. Vac. Sci. Technol. A 30, 01A114 (2012).

    Article  Google Scholar 

  34. F. Zaera: A thermal desorption and X-ray photoelectron spectroscopy study of the surface chemistry of iron pentacarbonyl. J. Vac. Sci. Technol. A 7, 640 (1989).

    Article  CAS  Google Scholar 

  35. Y. Yao, J. Guerrero-Sánchez, N. Takeuchi, and F. Zaera: Coadsorption of formic acid and hydrazine on Cu(110) single-crystal surfaces. J. Phys. Chem. C 123, 7584 (2019).

    Article  CAS  Google Scholar 

  36. H.E. Farnsworth, R.E. Schlier, T.H. George, and R.M. Burger: Application of the ion bombardment cleaning method to titanium, germanium, silicon, and nickel as determined by low-energy electron diffraction. J. Appl. Phys. 29, 1150 (1958).

    Article  CAS  Google Scholar 

  37. K. Klier, A.C. Zettlemoyer, and H. Leidheiser, Jr.: Chemisorption of carbon monoxide on Ni(110) and (100) nickel crystal faces. J. Chem. Phys. 52, 589 (1970).

    Article  CAS  Google Scholar 

  38. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, S. Cavazzoni, D. Ceresoli, G. Chiarotti, L., M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari and R.M. Wentzcovitch: Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 21, 395502 (2009).

    Google Scholar 

  39. I.A. Pašti, A. Jovanović, A.S. Dobrota, S.V. Mentus, B. Johansson, and N.V. Skorodumova: Atomic adsorption on pristine graphene along the Periodic Table of Elements—From PBE to non-local functionals. Appl. Surf. Sci. 436, 433 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this project was provided by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering (MSE) Division, under Award No. DE-SC0001839. N.T. and J.G.S. thank DGAPA-UNAM Project IN100516, and Conacyt Grant A1-S-9070 of the Call of Proposals for Basic Scientific Research 2017–2018 for partial financial support. N.T. thanks DGAPA-UNAM for a scholarship at the University of California, Riverside. Calculations were performed in the DGCTIC-UNAM Supercomputing Center, project LANCAD-UNAM-DGTIC-051.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Zaera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Sánchez, J., Chen, B., Takeuchi, N. et al. Role of oligomer structures in the surface chemistry of amidinate metal complexes used for atomic layer deposition of thin films. Journal of Materials Research 35, 720–731 (2020). https://doi.org/10.1557/jmr.2019.293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.293

Navigation