Skip to main content
Log in

Bubble formation in nuclear glasses: A review

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Highly radioactive waste is incorporated into a glass matrix to convert it into a safe, passive form suitable for long-term storage and disposal. It is currently known that alpha decay can generate gaseous species, which can nucleate into bubbles, either through the production of helium or from ballistic collisions with the glass network that liberate oxygen. An effective method to probe this phenomenon utilizes ion beams to either directly implant helium or investigate the damage due to ballistic collisions. This paper provides an overview of the methodology, summarizes the results of current studies, and draws comparisons between them. We find that the irradiation scheme as well as the temperature and composition of the glass are important in determining whether bubble formation will occur. We also explore how analytical techniques can promote bubble formation and suggest avenues for further work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Notes

  1. This reaction can also be written as 3He(d,α)p, which assumes that the electron from 1H is donated somewhere, for example, to the alpha particle, or that the 3He does not contain any electrons.

References

  1. W.J. Weber, R.C. Ewing, C.A. Angell, G.W. Arnold, A.N. Cormack, J.M. Delaye, D.L. Griscom, L.W. Hobb, A. Navrotsky, D.L. Price, A.M. Stoneham, and M.C. Weinberg: Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. J. Mater. Res. 12, 1946 (1997).

    Article  Google Scholar 

  2. A. Kerrache and J-M. Delaye: Interstitial sites for He incorporation in nuclear glasses and links to the structure: Results from numerical investigation. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 269 (2014).

    Article  CAS  Google Scholar 

  3. J.F. Shackleford: Gas solubility and diffusion in oxide glasses—Implications for nuclear wasteforms. Procedia Mater. Sci. 9, 278 (2014).

    Article  CAS  Google Scholar 

  4. S. Gin, A. Abdelouas, L.J. Criscenti, W.L. Ebert, K. Ferrand, T. Geisler, M.T. Harrison, Y. Inagaki, S. Mitsui, K.T. Mueller, J.C. Marra, C.G. Pantano, E.M. Pierce, J.V. Ryan, J.M. Chofield, C.I. Steefel, and J.D. Vienna: An international initiative on long-term behavior of high-level nuclear waste glass. Mater. Today 16, 243 (2013).

    Article  CAS  Google Scholar 

  5. Nuclear Decommissioning Authority: Experimental Studies of the Chemical Durability of U.K. HLW and ILW Glass; RWM005105, AMEC/103498/03 (Amec: Didcot, UK, 2016).

    Google Scholar 

  6. T.A. Taylor, R.J. Short, N.R. Gribble, J. Roe, and C.J. Steele: Rhenium volatilisation as caesium perrhenate from simulated vitrified high level waste from a melter crucible. In GLOBAL 2013 Conference Proceedings, American Nuclear Society, Vol. 1663 (American Nuclear Society: La Grange Park, Illinois, 2013); p. 450.

    Google Scholar 

  7. S. Peuget, J-N. Cachia, C. Jégou, X. Deschanels, D. Roudil, V. Broudic, J-M. Delaye, and J-M. Bart: Irradiation stability of R7T7-type borosilicate glass. J. Nucl. Mater. 354, 1 (2006).

    Article  CAS  Google Scholar 

  8. S. Peuget, T. Fares, E.A. Maugeri, R. Carabello, T. Charpentier, L. Martel, J. Somers, A. Janssen, T. Wiss, F. Rozenblum, M. Magnin, X. Deschanels, and C. Jégou: Effect of 10B(n, α)7Li irradiation on the structure of a sodium borosilicate glass. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 22 (2014).

    Article  CAS  Google Scholar 

  9. J.F. DeNatale and D.C. Howitt: A mechanism for radiation damage in silicate glasses. Nucl. Instrum. Methods Phys. Res., Sect. B 1, 489 (1984).

    Article  Google Scholar 

  10. N. Ollier, G. Rizza, B. Boizot, and G. Petite: Effects of temperature and flux on oxygen bubble formation in Li borosilicate glass under electron beam irradiation. J. Appl. Phys. 99, 073511 (2006).

    Article  CAS  Google Scholar 

  11. A.H. Mir, B. Boizot, T. Charpentier, M. Gennisson, M. Odorico, R. Podor, C. Jégou, S. Bouffard, and S. Peuget: Surface and bulk electron irradiation effects in simple and complex glasses. J. Non-Cryst. Solids 453, 141 (2016).

    Article  CAS  Google Scholar 

  12. J.F. DeNatale and D.G. Howitt: The gamma-irradiation of nuclear waste glasses. Radiat. Eff. 91, 89 (1985).

    Article  CAS  Google Scholar 

  13. O.J. McGann, P.A. Bingham, R.J. Hand, A.S. Gandy, M. Kavčič, M. Žitnic, K. Bučar, R. Edge, and N.C. Hyatt: The effects of γ-radiation on model vitreous wasteforms intended for the disposal of intermediate and high level radioactive wastes in the United Kingdom. J. Nucl. Mater. 429, 353 (2012).

    Article  CAS  Google Scholar 

  14. D. Manara, A. GranDjean, and D.R. Neuville: Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study. Am. Mineral. 94, 777 (2009).

    Article  CAS  Google Scholar 

  15. G. Calas, L. Cormier, L. Galoisy, and P. Jollivet: Structure–property relationships in multicomponent oxide glasses. C. R. Chim. 5, 831 (2002).

    Article  CAS  Google Scholar 

  16. G. Calas, L. Galoisy, L. Cormier, G. Ferlat, and G. Lelong: The structural properties of cations in nuclear glasses. Procedia Mater. Sci. 7, 23 (2014).

    Article  CAS  Google Scholar 

  17. J.F. Shackelford: Gas solubility and diffusion in oxide glasses—Implications for nuclear wasteforms. Procedia Mater. Sci. 7, 278–285 (2014).

    Article  CAS  Google Scholar 

  18. J.E. Shelby: Helium diffusion and solubility in K2O–SiO2 glasses. J. Am. Ceram. Soc. 57, 260–263 (1974).

    Article  CAS  Google Scholar 

  19. G. Gutierrez, S. Peuget, J.A. Hinks, G. Greaves, S.E. Donnelly, E. Oliviero, and C. Jégou: Helium bubble formation in nuclear glass by in situ TEM ion implantation. J. Nucl. Mater. 452, 565 (2014).

    Article  CAS  Google Scholar 

  20. A.R. Hall, J.T. Dalton, B. Hudson, and J.A.C. Marples: Development and radiation stability of glasses for highly radioactive wastes. In Proceeding of the Symposium on Management of Radioactive Wastes from the Nuclear Fuel Cycle, Vol. 2 (International Atomic Energy Agency: Vienna, Austria, 1976); p. 3.

    Google Scholar 

  21. D.G. Howitt, H.W. Chan, J.F. DeNatale, and J.P. Heuer: Mechanism for the radiolytically induced decomposition of soda–silicate glasses. J. Am. Ceram. Soc. 74, 1145 (1991).

    Article  CAS  Google Scholar 

  22. B. Boizot, N. Ollier, F. Olivier, G. Petite, D. Ghalen, and E. Malchukova: Irradiation effects in simplified nuclear waste glass. Nucl. Instrum. Methods Phys. Res., Sect. B 240, 146 (2005).

    Article  CAS  Google Scholar 

  23. J.F. DeNatale, D.G. Howitt, and G.W. Arnold: Radiation damage in silicate glass. Radiat. Eff. 98, 63 (1986).

    Article  CAS  Google Scholar 

  24. R. Evron, Y. Cohen, O. Regev, and Y. Eyal: Ion Implantation Induced Microstructural Damage in a Nuclear Waste Glass (Nuclear Society of Israel: Haifa, Israel, 1994); pp. VIII–2–VIII–7.

    Google Scholar 

  25. A.H. Mir, S. Peuget, M. Toulemonde, C. Jégou, S. Miro, and S. Bouffard: Defect recovery and damage reduction in borosilicate glasses under double ion beam irradiation. Europhys. Lett. 112, 36002–1 (2015).

    Article  CAS  Google Scholar 

  26. G. Karakurt, A. Abdelouas, J-P. Guin, M. Nivard, T. Sauvage, M. Paris, and J-F. Bardeau: Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass. J. Nucl. Mater. 475, 243 (2016).

    Article  CAS  Google Scholar 

  27. L. Chen, D.F. Zhang, P. Lv, J.D. Zhang, Z. Du, W. Yuan, S. Nan, Z.H. Zhu, and T.S. Wang: Evolutions of molecular oxygen formation and sodium migration in Xe ion irradiated borosilicate glasses. J. Non-Cryst. Solids 448, 6 (2016).

    Article  CAS  Google Scholar 

  28. C.L. Dube, M.C. Stennett, A.S. Gandy, and N.C. Hyatt: Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 371, 424 (2016).

    Article  CAS  Google Scholar 

  29. M.T. Harrison: Vitrification of high level waste in the UK. Procedia Mater. Sci. 7, 10 (2014).

    Article  CAS  Google Scholar 

  30. J.F. Ziegler, J.P. Biersack, and U. Littmark: The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).

    Book  Google Scholar 

  31. H. Bethe and J. Ashkin: Experimental Nuclear Physics, E. Segré, ed. (J. Wiley, New York, 1953); p. 253.

    Google Scholar 

  32. J. Lindhard, M. Scharff, and H.E. Schiott: Range concepts and heavy ion ranges. Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 33, 1 (1963).

    Google Scholar 

  33. P. Sigmund and A. Schinner: Progress in understanding heavy-ion stopping. Nucl. Instrum. Methods Phys. Res., Sect. B 382, 14 (2016).

    Article  CAS  Google Scholar 

  34. W.G. Burns, A.E. Hughes, J.A.C. Marples, R.S. Neilson, and A.M. Stoneham: Effects of radiation on the leach rates of vitrified radioactive waste. J. Nucl. Mater. 107, 245 (1982).

    Article  CAS  Google Scholar 

  35. L. Leay, W. Bower, G. Horne, P. Wady, A. Baidak, M. Pottinger, M. Nancekievill, A.D. Smith, S. Watson, P.R. Green, B. Lennox, J.A. Laverne, and S.M. Pimboltt: Development of irradiation capabilities to address the challenges of the nuclear industry. Nucl. Instrum. Methods Phys. Res., Sect. B 343, 62–69 (2015).

    Article  CAS  Google Scholar 

  36. P.T. Wady, A. Draude, S.M. Shubeta, A.D. Smith, N. Mason, S.M. Pimblott, and E. Jimenez-Melero: Accelerated radiation damage test facility using a 5 MV tandem ion accelerator. Nucl. Instrum. Methods Phys. Res., Sect. A 806, 109 (2016).

    Article  CAS  Google Scholar 

  37. H. Arribart and D. Abriou: Ten years of atomic force microscopy in glass research. Ceram. Silik. 44, 121 (2000).

    Google Scholar 

  38. A.H. Mir, I. Monnet, M. Touelmonde, S. Bouffard, C. Jégou, and S. Peuget: Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses: Stopping power dependence of the mechanical properties. J. Nucl. Mater. 469, 244 (2016).

    Article  CAS  Google Scholar 

  39. A.Y. Terekhov, B.J. Heuser, M.A. Okuniewski, R.S. Averback, S. Seifert, and P.R. Jemian: Small-angle X-ray scattering measurements of helium-bubble formation in borosilicate glass. J. Appl. Crystallogr. 39, 647 (2006).

    Article  CAS  Google Scholar 

  40. F. Chamssedine, T. Sauvage, S. Peuget, T. Fares, and G. Martin: Helium diffusion coefficient measurements in R7T7 nuclear glass by 3He(d,α)1H nuclear reaction analysis. J. Nucl. Mater. 400, 175 (2010).

    Article  CAS  Google Scholar 

  41. T. Fares, S. Peuget, F. Chamssedine, T. Sauvage, O. Bouty, V. Broudic, X. Deschanels, E. Maugeri, R. Bès, and C. Jégou: Helium solubility in SON68 nuclear waste glass. J. Am. Ceram. Soc. 95, 3854 (2012).

    Article  CAS  Google Scholar 

  42. R. Bès, T. Sauvage, S. Peuget, J. Haussy, F. Chamssedine, E. Oliviero, T. Fares, and L. Vincent: Helium mobility in SON68 borosilicate nuclear glass: A nuclear reaction analysis approach. J. Nucl. Mater. 443, 544 (2013).

    Article  CAS  Google Scholar 

  43. S. Markelj, O.V. Ogorodnikova, P. Pelicon, T. Schwarz Selinger, P. Vavpetič, and I. Čadež: In situ nuclear reaction analysis of D retention in undamaged and self-damaged tungsten under atomic D exposure. Phys. Scr. T159, 014047 (2014).

    Article  CAS  Google Scholar 

  44. S. Peuget, J-M. Delaye, and C. Jégou: Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation. J. Nucl. Mater. 444, 76 (2014).

    Article  CAS  Google Scholar 

  45. M. Poon, R.G. Macaulany-Newcombe, J.W. Davis, and A.A. Haasz: Flux dependence of deuterium retention in single crystal tungsten. J. Nucl. Mater. 307–311 (Part 1), 723 (2002).

    Article  Google Scholar 

  46. M. Callisti, M. Karlik, and T. Polcar: Bubbles formation in helium ion irradiated Cu/W multilayer nanocomposites: Effects on structure and mechanical properties. J. Nucl. Mater. 473, 18 (2016).

    Article  CAS  Google Scholar 

  47. S. Fréchard, M. Walls, M. Koiak, J.P. Chevallier, J. Henry, and D. Gorse: Study by EELS of helium bubbles in a martensitic steel. J. Nucl. Mater. 393, 102 (2009).

    Article  CAS  Google Scholar 

  48. K. Prikhodko and O. Emelyanova: Using EELS analysis in STEM to investigate the helium content in irradiated materials. In European Microscopy Congress 2016 Proceedings (Wiley: Hoboken, NJ, 2016); session IM08-410, number 5844.

    Google Scholar 

  49. M. Bowden, N.M. Dixon, J.D. Gardiner, and S.F. Carter: Raman microscope analysis of gaseous and solid inclusions in fluoride glass optical fibres. J. Mater. Sci.: Mater. Electron. 1, 34 (1990).

    CAS  Google Scholar 

  50. J-C. Wang, Q-B. Guo, X-F. Liu, Y. Dai, Z-Y. Wang, and J-R. Qiu: Bubble generation in germanate glass induced by femtosecond laser. Chin. Phys. Lett. 33, 036101 (2016).

    Article  Google Scholar 

  51. N. Ollier, B. Champagnon, B. Boizot, Y. Guyot, G. Panczer, and B. Padlyak: Influence of external β-irradiation in oxide glasses. J. non-Crst. Solids 323, 200 (2003).

    Article  CAS  Google Scholar 

  52. S. Cheng, G. Yang, Y. Zhao, M. Peng, J. Skibsted, and Y. Yue: Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy. Sci. Rep. 5, 17526 (2015).

    Article  CAS  Google Scholar 

  53. A.H. Mir, I. Monnet, B. Boizot, C. Jegou, and S. Peuget: Electron and electron-ion sequential irradiation of borosilicate glasses: Impact of the pre-existing defects. J. Nucl. Mater. 4889, 91 (2017).

    Article  CAS  Google Scholar 

  54. P.B. Rose, D.I. Woodward, M.I. Ojovan, N.C. Hyatt, and W.E. Lee: Crystallisation of a simulated borosilicate high-level waste glass produced on a full-scale vitrification line. J. Non-Cryst. Solids 357, 2989 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Anamul Haq Mir for providing the image of bubbles in a U.K. Ca/Zn glass formulation as well as Bill Weber for some useful discussion. We also acknowledge the support of the University of Manchester’s Dalton Cumbrian Facility (DCF), a partner in the National Nuclear User Facility, the EP SRC U.K. National Ion Beam Centre and the Henry Royce Institute. We recognize Paul Wady and Samir Shubeta for their assistance during this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Leay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leay, L., Harrison, M.T. Bubble formation in nuclear glasses: A review. Journal of Materials Research 34, 905–920 (2019). https://doi.org/10.1557/jmr.2019.29

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.29

Navigation