Skip to main content
Log in

First-principles study of structure and mechanical properties of TMB12(TM = W and Ti) superhard material under pressure

  • Computational Materials Science
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We apply the first-principles calculations to investigate the structure, mechanical, and thermodynamic properties of WB12 and TiB12 under high pressure (0–100 GPa). The calculated results show that WB12 and TiB12 are thermodynamically stable at the 0 GPa or high pressure. WB12 is more thermodynamically stable than TiB12. In particular, the calculated Vickers hardness of WB12 and TiB12 at the ground state is 29.9 GPa and 43.2 GPa, respectively, indicating that TiB12 is a potential superhard material. With increasing pressure, the calculated elastic modulus of WB12 and TiB12 increases gradually. The calculated electronic structure shows that the high Vickers hardness and elastic properties of WB12 and TiB12 derive from the 3D network B–B covalent bonds. In addition, the calculated Debye temperature at the ground state is 927 K for WB12 and 1339 K for TiB12, respectively. With increasing pressure, the calculated Debye temperature of WB12 and TiB12 increases gradually. Our work shows that TiB12 not only exhibits high hardness but also shows better thermodynamic properties in comparison with WB12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Y. Pan and Y. Lin: Influence of Re concentration on the mechanical properties of tungsten borides from first-principles calculations. JOM 69, 2009 (2017).

    Article  CAS  Google Scholar 

  2. Q. Tao, Y. Chen, M. Lian, C. Xu, L. Li, X. Feng, X. Wang, T. Cui, W. Zheng, and P. Zhu: Modulating hardness in molybdenum monoborides by adjusting an array of boron zigzag chains. Chem. Mater. 31, 200 (2019).

    Article  CAS  Google Scholar 

  3. Y. Pan and Y. Lin: Influence of B Concentration on the structural stability and mechanical properties of Nb–B compounds. J. Phys. Chem. C 119, 23175 (2015).

    Article  CAS  Google Scholar 

  4. A.G. Kvashnin, H.A. Zakaryan, C. Zhao, Y. Duan, Y.A. Kvashnina, C. Xie, H. Dong, and A.R. Oganov: New tungsten borides, their stability and outstanding mechanical properties. J. Phys. Chem. Lett. 9, 3470 (2018).

    Article  CAS  Google Scholar 

  5. Y. Pan and B. Zhou: ZrB2: Adjusting the phase structure to improve the brittle fracture and electronic properties. Ceram. Int. 43, 8763 (2017).

    Article  CAS  Google Scholar 

  6. P.J. Robinson, G. Liu, S. Ciborowski, C.M. Martinez, J.R. Chamorro, X. Zhang, T.M. Mcqueen, K.H. Bowen, and A.N. Alexandroca: Mystery of three borides: Differential metal–boron bonding governing superhard structures. Chem. Mater. 29, 9892 (2017).

    Article  CAS  Google Scholar 

  7. Y. Pan and S. Wang: Insight into the oxidation mechanism of MoSi2: Ab initio calculations. Ceram. Int. 44, 19583 (2018).

    Article  CAS  Google Scholar 

  8. Y. Pan, P. Mao, H. Jiang, Y. Wan, and W. Guan: Insight into the effect of Mo and Re on mechanical and thermodynamic properties of NbSi2 based silicide. Ceram. Int. 43, 5274 (2017).

    Article  CAS  Google Scholar 

  9. C. Cheng, H. Li, and Q. Fu: Initial oxidation of ZrB2(0001) from first-principles calculations. Comput. Mater. Sci. 153, 282 (2018).

    Article  CAS  Google Scholar 

  10. Y. Pan, Y. Lin, Q. Xue, C. Ren, and H. Wang: Relationship between Si concentration and mechanical properties of Nb–Si compounds: A first-principles study. Mater. Des. 89, 676 (2016).

    Article  CAS  Google Scholar 

  11. A. Šimůnek: Anisotropy of hardness from first principles: The cases of ReB2 and OsB2. Phys. Rev. B 80, 060103 (2009).

    Article  CAS  Google Scholar 

  12. A. Knappschneider, C. Litterscheid, D. Dzivenko, J.A. Kurzman, and R. Sechadri: Possible superhardness of CrB4. Inorg. Chem. 52, 540 (2013).

    Article  CAS  Google Scholar 

  13. M. Wang, Y.W. Li, T. Cui, Y.M. Ma, and G.T. Zou: Origin of hardness in WB4 and its implications for ReB4, TaB4, MoB4, TcB4, and OsB4. Appl. Phys. Lett. 93, 101905 (2008).

    Article  CAS  Google Scholar 

  14. Y. Pan and M. Wen: Insight into the oxidation mechanism of Nb3Si(111) surface: First-principles calculations. Mater. Res. Bull. 107, 484 (2018).

    Article  CAS  Google Scholar 

  15. H. Euchner and P.H. Mayrhofer: Designing thin film materials—Ternary borides from first principles. Thin Solid Films 583, 46 (2015).

    Article  CAS  Google Scholar 

  16. A.G.V.D. Geest and A.N. Kolmogorov: Stability of 41 metal–boron systems at 0 GPa and 30 GPa from first-principles. Calphad 46, 184 (2014).

    Article  CAS  Google Scholar 

  17. Y. Pan and W.M. Guan: Exploring the structural stability and mechanical properties of TM5SiB2 ternary silicides. Ceram. Int. 44, 9893 (2018).

    Article  CAS  Google Scholar 

  18. D. Zhou, J. Wang, Q. Cui, and Q. Li: Crystal structure and physical properties of Mo2B: First-principle calculations. J. Appl. Phys. 115, 113504 (2014).

    Article  CAS  Google Scholar 

  19. D.Y. Wang, B. Wang, and Y.X. Wang: New crystal structures of IrB and IrB2: First-principles calculations. J. Phys. Chem. A 116, 21961 (2012).

    CAS  Google Scholar 

  20. A.L. Ivanovskii: Mechanical and electronic properties of diborides of transition 3d–5d metals from first-principles toward search of novel ultra-incompressible and superhard materials. Prog. Mater. Sci. 57, 184 (2012).

    Article  CAS  Google Scholar 

  21. Y. Pan, Y. Lin, and C. Tong: New insight into the effect of alloying elements on elastic behavior, hardness, and thermodynamic properties of Ru2B3. J. Phys. Chem. C 120, 21762 (2016).

    Article  CAS  Google Scholar 

  22. T. Ma, H. Li, X. Zheng, S. Wang, X. Wang, H. Zhao, S. Han, J. Liu, R. Zhang, P. Zzhu, Y. Long, J. Cheng, Y. Ma, and Y. Zhao: Ultrastrong boron frameworks in ZrB12: A highway for electron conducting. Adv. Mater. 18, 1604003 (2017).

    Article  CAS  Google Scholar 

  23. G. Akopov, H. Yin, I. Roh, L.E. Pangilinan, and R.B. Kaner: Investigation of hardness of ternary borides of the YCrB4, Y2ReB6, Y3ReB7, and YMo3B7 structural types. Chem. Mater. 30, 6494 (2018).

    Article  CAS  Google Scholar 

  24. M.I. Tsindlekht, G.I. Leviev, I. Asulin, A. Sharoni, O. Millo, I. Felner, Y.B. Paderno, V.B. Filippov, and M.A. Belogolovskii: Tunneling and magnetic characteristics of superconducting ZrB12 single crystals. Phys. Rev. B 69, 212508 (2004).

    Article  CAS  Google Scholar 

  25. C. Xie, Q. Zhang, H.A. Zakaryan, H. Wan, N. Liu, A.G. Kvashnin, and A.R. Oganov: Stable and hard hafnium borides: A first-principles study. J. Appl. Phys. 125, 205109 (2019).

    Article  CAS  Google Scholar 

  26. G. Akopov, I. Roh, Z.C. Sobell, M.T. Yeung, and R.B. Kaner: Investigation of ternary metal dodecaborides (M1M2M3)B12 (M1, M2 and M3 = Zr, Y, Hf, and Gd). Dalton Trans. 47, 6683 (2018).

    Article  CAS  Google Scholar 

  27. H. Werheit, Y. Paderno, V. Filippov, V. Paderno, A. Pietraszko, M. Armbruster, and U. Schwarz: Peculiarities in the Raman spectra of ZrB12 and LuB12 single crystals. J. Solid State Chem. 179, 2761 (2006).

    Article  CAS  Google Scholar 

  28. N. Korozlu, K. Colakoglu, E. Deligoz, and S. Aydin: The elastic and mechanical properties of MB12 (M = Zr, Hf, Y, Lu) as a function of pressure. J. Alloys Compd. 546, 157 (2013).

    Article  CAS  Google Scholar 

  29. B. Ai, X. Luo, J. Yu, W. Miao, and P. Hu: Theoretical elastic stiffness and thermodynamic properties of zirconium dodecaboride from first principles calculation. Comput. Mater. Sci. 82, 37 (2014).

    Article  CAS  Google Scholar 

  30. A.V. Rybina, K.S. Nemkovski, P.A. Alekseev, J.M. Mignot, E.S. Clementyev, M. Johnson, L. Capogna, A.V. Dukhnenko, A.B. Lyashenko, and V.B. Filippov: Lattice dynamics in ZrB12 and LuB12: Ab initio calculations and inelastic neutron scattering measurements. Phys. Rev. B 82, 024302 (2010).

    Article  CAS  Google Scholar 

  31. Y. Pan and S. Shi: Influence of alloying elements on the mechanical properties of PtAl2 from first-principles calculations. JOM 70, 2463 (2018).

    Article  CAS  Google Scholar 

  32. T. Liu, M. Hu, W. Lu, J. Zhan, X. Cui, X. Zhan, and J. Yu: First-principles investigation on thermodynamic phase stability of jadeite under high temperature and high pressure. Phys. B 567, 55 (2019).

    Article  CAS  Google Scholar 

  33. Y. Pan: Vacancy-enhanced cycle life and electrochemical performance of lithium-rich layered oxide Li2RuO3. Ceram. Int. 45, 18315 (2019).

    Article  CAS  Google Scholar 

  34. Y. Pan, Y. Li, and Q. Zheng: Influence of Ir concentration on the structure, elastic modulus and elastic anisotropy of Nb–Ir based compounds from first-principles calculations. J. Alloys Compd. 789, 860 (2019).

    Article  CAS  Google Scholar 

  35. S. Wang and Y. Pan: Insight into the structures, melting points and mechanical properties of NbSi2 from first-principles calculations. J. Am. Ceram. Soc. 102, 4822 (2019).

    Article  CAS  Google Scholar 

  36. Y. Pan and W.M. Guan: Exploring the novel structure, elastic and thermodynamic properties of W3Si silicides from first-principles calculations. Ceram. Int. 45, 15649 (2019).

    Article  CAS  Google Scholar 

  37. S. Wang, Y. Pan, Y. Lin, and C. Tong: Influence of doping concentration on mechanical properties of Mo2FeB2 alloyed with Cr and Ni from first-principle calculations. Comput. Mater. Sci. 146, 18 (2018).

    Article  CAS  Google Scholar 

  38. Y. Pan, W.M. Guan, and Y.Q. Li: Insight into the electronic and mechanical properties of novel TMCrSi ternary silicides from first-principles calculations. Phys. Chem. Chem. Phys. 20, 15863 (2018).

    Article  CAS  Google Scholar 

  39. X. Zhang, J. Chen, F. Wang, X. Chen, H. Ma, D. Li, C. Liu, and H. Guo: Insight into the elastic and anisotropic properties of BiMg2MO6 (M = P, As, and V) ceramics from the first-principles calculations. Ceram. Int. 45, 11136 (2019).

    Article  CAS  Google Scholar 

  40. Y. Pan and C. Jin: Vacancy-induced mechanical and thermodynamic properties of B2–RuAl. Vacuum 143, 165 (2017).

    Article  CAS  Google Scholar 

  41. N.H. Miao, B.S. Sa, J. Zhou, and Z.M. Sun: Theoretical investigation on the transition-metal borides with Ta3B4-type structure: A class of hard and refractory materials. Comput. Mater. Sci. 50, 1559 (2011).

    Article  CAS  Google Scholar 

  42. Y. Pan, C. Jing, and Y.P. Wu: The structure, mechanical and electronic properties of WSi2 from first-principles investigations. Vacuum 167, 374 (2019).

    Article  CAS  Google Scholar 

  43. R. Zhang, S. Leng, Y. Yang, W. Shi, and Z. Lu: Atomistic simulation of the mechanical properties of β-SiC based on the first-principles. Phys. B 512, 1 (2017).

    Article  CAS  Google Scholar 

  44. Y. Pan, S-L. Wang, and C-M. Zhang: Ab initio investigation of structure and mechanical properties of PtAlTM ternary alloy. Vacuum 151, 205 (2018).

    Article  CAS  Google Scholar 

  45. Q. Li, D. Zhou, W. Zheng, Y. Ma, and C. Chen: Anomalous stress response of ultrahard WBn compounds. Phys. Rev. Lett. 115, 185502 (2015).

    Article  CAS  Google Scholar 

  46. Y. Pan and M. Wen: The influence of vacancy on the mechanical properties of IrAl coating: First-principles calculations. Thin Solid Films 664, 46 (2018).

    Article  CAS  Google Scholar 

  47. Z.J. Wu, E.J. Zhao, H.P. Xiang, and X.F. Hao: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115 (2007).

    Article  CAS  Google Scholar 

  48. Y. Pan, Y. Lin, H. Wang, and C. Zhang: Vacancy induced brittle-to-ductile transition of Nb5Si3 alloy from first-principles. Mater. Des. 86, 259 (2015).

    Article  CAS  Google Scholar 

  49. Y. Liu, H. Fu, W. Li, J. Xing, Y. Li, and B. Zheng: Mechanical properties and chemical bonding of M2B and M2B0.75C0.25 (M = Fe, Cr, W, Mo, Mn) compounds. J. Mater. Res. 33, 3665 (2018).

    Article  CAS  Google Scholar 

  50. Y. Pan: RuAl2: Structure, electronic and elastic properties from first-principles. Mater. Res. Bull. 93, 56 (2017).

    Article  CAS  Google Scholar 

  51. R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., London, Sect. A 65, 349 (1952).

    Article  Google Scholar 

  52. Y. Pan and W.M. Guan: Probing the balance between ductility and strength: Transition metal silicides. Phys. Chem. Chem. Phys. 19, 19427 (2017).

    Article  CAS  Google Scholar 

  53. Y. Pan and M. Wen: Ab initio calculations of mechanical and thermodynamic properties of TM (transition metal: 3d and 4d)-doped Pt3Al. Vacuum 156, 419 (2018).

    Article  CAS  Google Scholar 

  54. Y. Pan: First-principles investigation of the new phases and electrochemical properties of MoSi2 as the electrode materials of lithium ion battery. J. Alloys Compd. 779, 813 (2019).

    Article  CAS  Google Scholar 

  55. X. Li and J. Du: Unexpected superhard phases of niobium triborides: First-principles calculations. RSC Adv. 6, 49214 (2016).

    Article  CAS  Google Scholar 

  56. Y. Pan and M. Wen: Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 22055 (2018).

    Article  CAS  Google Scholar 

  57. X. Li, L. Han, Y. Hou, H. Yan, Z. Hu, and S. Zhang: New ultra-incompressible phases of NbB4 predicted from first principles. Phys. Lett. A 381, 362 (2017).

    Article  CAS  Google Scholar 

  58. Y. Pan, S. Wang, X. Zhang, and L. Jia: First-principles investigation of new structure, mechanical and electronic properties of Mo-based silicides. Ceram. Int. 44, 1744 (2018).

    Article  CAS  Google Scholar 

  59. Y. Pan, P. Wang, and C. Zhang: Structure, mechanical, electronic and thermodynamic properties of Mo5Si3 from first-principles calculations. Ceram. Int. 44, 12357 (2018).

    Article  CAS  Google Scholar 

  60. X. Li, Y. Tao, and F. Peng: Pressure and temperature induced phase transition in WB4: A first principles study. J. Alloys Compd. 687, 579 (2016).

    Article  CAS  Google Scholar 

  61. Y. Liang, Z. Fu, X. Yuan, S. Wang, Z. Zhong, and W. Zhang: An unexpected softening from WB3 to WB4. Europhys. Lett. 98, 66004 (2012).

    Article  CAS  Google Scholar 

  62. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002).

    CAS  Google Scholar 

  63. Y. Pan, Y.Q. Li, Q.H. Zheng, and Y. Xu: Point defect of titanium sesquioxide Ti2O3 as the application of next generation Li-ion batteries. J. Alloys Compd. 786, 621 (2019).

    Article  CAS  Google Scholar 

  64. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  65. Y. Pan: Theoretical discovery of high capacity hydrogen storage metal tetrahydrides. Int. J. Hydrogen Energy 44, 18153 (2019).

    Article  CAS  Google Scholar 

  66. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    Article  CAS  Google Scholar 

  67. Y. Pan: Role of S–S interlayer spacing on the hydrogen storage mechanism of MoS2. Int. J. Hydrogen Energy 43, 3087 (2018).

    Article  CAS  Google Scholar 

  68. S. Sun, H. Fu, J. Lin, G. Guo, Y. Lei, and R. Wang: The stability, mechanical properties, electronic structures and thermodynamic properties of (Ti, Nb)C compounds by first-principles calculations. J. Mater. Res. 33, 495 (2018).

    Article  CAS  Google Scholar 

  69. Y. Pan and W.M. Guan: Prediction of new phase and electrochemical properties of Li2S2 for the application of Li–S batteries. Inorg. Chem. 57, 6617 (2018).

    Article  CAS  Google Scholar 

  70. X. Zhang and W. Jiang: Elastic, lattice dynamical, thermal stabilities and thermodynamic properties of BiF3-type Mg3RE compounds from first-principles calculations. J. Alloys Compd. 663, 565 (2016).

    Article  CAS  Google Scholar 

  71. Y. Pan and W. Guan: Prediction of new stable structure, promising electronic and thermodynamic properties of MoS3: Ab initio calculations. J. Power Sources 325, 246 (2016).

    Article  CAS  Google Scholar 

  72. J. Diyou, X. Li, H. Xuemei, and W. Tao: Effect of Zr additions on crystal structures and mechanical properties of binary W–Zr alloys: A first-principles study. J. Mater. Res. 34, 290 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the State Key Laboratory of Advanced Technology for Comprehensive Utilization of Platinum Metals (Grant No. SKL-SPM-201816). We also thank Lady Yun Zheng and Runxi Pan for help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Pan or Yanlin Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Jia, Y. First-principles study of structure and mechanical properties of TMB12(TM = W and Ti) superhard material under pressure. Journal of Materials Research 34, 3554–3562 (2019). https://doi.org/10.1557/jmr.2019.275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.275

Navigation