Skip to main content
Log in

Electro-assisted ammonium persulfate activation to promote the introduction of N and S into TiO2 film: Enhancing its photoelectrocatalytic performance under solar

  • Energy Conversion and Storage Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Anatase phase NOx/S6+–TiO2 (x = 0, 1) film with high solar-driven activity has been successfully prepared via electro-assisted oxidation processes. The morphological and structural properties of the film were characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction, while the optical property was detected by UV-vis-NIR absorption spectroscopy. The results showed that the NOx/S6+–TiO2 film was composed of “flower-like” microvoids structure and displayed broad and strong optical absorption at around 544 and 1500 nm. Transient photocurrent response, photoluminescence spectroscopy, and electrochemical impedance spectroscopy indicated that the generation and separation of photogenerated charges were significantly enhanced under simulated solar irradiation. The NOx/S6+–TiO2 film exhibited excellent photoelectrocatalytic activity for the degradation of methyl orange (MO), and the decoloration rate and TOC removal respectively reached 98.97 and 59.44% at 20 min under solar irradiation. The film still had good stability after reusing ten times. Furthermore, a possible mechanism of photoelectrocatalysis was suggested in MO degradation by using NOx/S6+–TiO2 film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A. Brindha and T. Sivakumar: Visible active N,S co-doped TiO2/graphene photocatalysts for the degradation of hazardous dyes. J. Photochem. Photobiol., A 340, 146 (2017).

    Article  CAS  Google Scholar 

  2. X. Li, J. Xie, C. Jiang, J. Yu, and P. Zhang: Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018).

    Article  CAS  Google Scholar 

  3. S. Garcia-Segura and E. Brillas: Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol., C 31, 1 (2017).

    Article  CAS  Google Scholar 

  4. C. Liu, Y. Ding, W. Wu, and Y. Teng: A simple and effective strategy to fast remove chromium(VI) and organic pollutant in photoelectrocatalytic process at low voltage. Chem. Eng. J. 306, 22 (2016).

    Article  CAS  Google Scholar 

  5. Q. Wang, N. Zhu, E. Liu, C. Zhang, J.C. Crittenden, Y. Zhang, and Y. Cong: Fabrication of visible-light active Fe2O3-GQDs/NF-TiO2 composite film with highly enhanced photoelectrocatalytic performance. Appl. Catal., B 205, 347 (2017).

    Article  CAS  Google Scholar 

  6. Z. Lyu, B. Liu, R. Wang, and L. Tian: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of (001) facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).

    Article  CAS  Google Scholar 

  7. X. Zhou, Y. Zheng, J. Zhou, and S. Zhou: Degradation kinetics of photoelectrocatalysis on landfill leachate using codoped TiO2/Ti photoelectrodes. J. Nanomater. 2015, 7 (2015).

    Google Scholar 

  8. H. Kmentová, D. Nandan, Š. Kment, A. Naldoni, M.B. Gawande, Z. Hubička, and R. Zbořil: Significant enhancement of photoactivity in one-dimensional TiO2 nanorods modified by S-, N-, O-doped carbon nanosheets. Catal. Today 328, 111 (2019).

    Article  CAS  Google Scholar 

  9. N. Rahimi, R.A. Pax, and E.M. Gray: Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Chem. 44, 86 (2016).

    Article  CAS  Google Scholar 

  10. C. Li, Z. Zhao, H. Shindume Lomboleni, H. Huang, and Z. Peng: Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J. Mater. Res. 32, 737 (2016).

    Article  CAS  Google Scholar 

  11. R. Daghrir, P. Drogui, N. Delegan, and M.A. El-Khakani: Electrochemical degradation of chlortetracycline using N-doped Ti/TiO2 photoanode under sunlight irradiations. Water Res. 47, 6801 (2013).

    Article  CAS  Google Scholar 

  12. T. Umebayashi, T. Yamaki, H. Itoh, and K. Asai: Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454 (2002).

    Article  CAS  Google Scholar 

  13. D.M. Andoshe, K. Yim, W. Sohn, C. Kim, T.L. Kim, K.C. Kwon, K. Hong, S. Choi, C.W. Moon, S-P. Hong, S. Han, and H-W. Jang: One-pot synthesis of sulfur and nitrogen codoped titanium dioxide nanorod arrays for superior photoelectrochemical water oxidation. Appl. Catal., B 234, 213 (2018).

    Article  CAS  Google Scholar 

  14. X. Chen and C. Burda: Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J. Phys. Chem. B 108, 15446 (2004).

    Article  CAS  Google Scholar 

  15. R. Asahi and T. Morikawa: Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis. Chem. Phys. 339, 57 (2007).

    Article  CAS  Google Scholar 

  16. M.M. Momeni, Y. Ghayeb, and Z. Ghonchegi: Visible light activity of sulfur-doped TiO2 nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. J. Solid State Electrochem. 19, 1359 (2015).

    Article  CAS  Google Scholar 

  17. W-S. Chen and C-P. Huang: Mineralization of aniline in aqueous solution by electrochemical activation of persulfate. Chemosphere 125, 175 (2015).

    Article  CAS  Google Scholar 

  18. Y. Deng and C.M. Ezyske: Sulfate radical-advanced oxidation process (SR-AOP) for simultaneous removal of refractory organic contaminants and ammonia in landfill leachate. Water Res. 45, 6189 (2011).

    Article  CAS  Google Scholar 

  19. L. Gomathi-Devi and R. Kavitha: Review on modified N–TiO2 for green energy applications under UV/visible light: Selected results and reaction mechanisms. RSC Adv. 4, 28265 (2014).

    Article  CAS  Google Scholar 

  20. C. McManamon, J. O’Connell, P. Delaney, S. Rasappa, J.D. Holmes, and M.A. Morris: A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity. J. Mol. Catal. A: Chem. 406, 51 (2015).

    Article  CAS  Google Scholar 

  21. G. Yang, T. Wang, B. Yang, Z. Yan, S. Ding, and T. Xiao: Enhanced visible-light activity of F–N co-doped TiO2 nanocrystals via nonmetal impurity, Ti3+ ions and oxygen vacancies. Appl. Surf. Sci. 287, 135 (2013).

    Article  CAS  Google Scholar 

  22. J-M. Wu and J-X. Yin: A facile solution-based approach to a photocatalytic active branched one-dimensional TiO2 array. RSC Adv. 5, 3465 (2015).

    Article  CAS  Google Scholar 

  23. V.I. Sysoev, A.V. Okotrub, A.V. Gusel’nikov, D.A. Smirnov, and L.G. Bulusheva: In situ XPS observation of selective NOx adsorption on the oxygenated graphene films. Phys. Status Solidi B 255, 1700267 (2018).

    Article  CAS  Google Scholar 

  24. M. Bendova, J. Kolar, M. Marik, T. Lednicky, and A. Mozalev: Influence of nitrogen species on the porous-alumina-assisted growth of TiO2 nanocolumn arrays. Electrochim. Acta 281, 796 (2018).

    Article  CAS  Google Scholar 

  25. Y. Fan, C. Ma, B. Liu, H. Chen, L. Dong, and Y. Yin: Nitrogen doped anatase TiO2 sheets with dominant (001) facets for enhancing visible-light photocatalytic activity. Mater. Sci. Semicond. Process. 27, 47 (2014).

    Article  CAS  Google Scholar 

  26. X. Cheng, H. Liu, Q. Chen, J. Li, and P. Wang: Construction of N, S codoped TiO2 NCs decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim. Acta 103, 134 (2013).

    Article  CAS  Google Scholar 

  27. X-B. Chen and B. Clemens: The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J. Am. Chem. Soc. 130, 5018 (2008).

    Article  CAS  Google Scholar 

  28. Z. Zhang and P. Wang: Optimization of photoelectrochemical water splitting performance on hierarchical TiO2 nanotube arrays. Energy Environ. Sci. 5, 6506 (2012).

    Article  CAS  Google Scholar 

  29. D. Wei: Formation and crystallization characteristics of anodic oxide film on pure titanium in potentiostatic mode. J. South China Univ. Technol. 40, 30 (2012).

    CAS  Google Scholar 

  30. A. Mazzarolo, M. Curioni, A. Vicenzo, P. Skeldon, and G.E. Thompson: Anodic growth of titanium oxide: Electrochemical behaviour and morphological evolution. Electrochim. Acta 75, 288 (2012).

    Article  CAS  Google Scholar 

  31. X-B. Chen, P-A. Glans, X. Qiu, S. Dayal, W.D. Jennings, K.E. Smith, C. Burda, and J. Guo: X-ray spectroscopic study of the electronic structure of visible-light responsive N-, C- and S-doped TiO2. J. Electron Spectrosc. Relat. Phenom. 162, 67 (2008).

    Article  CAS  Google Scholar 

  32. J. Manju and S.M. Joseph-Jawhar: Synthesis of magnesium-doped TiO2 photoelectrodes for dye-sensitized solar cell applications by solvothermal microwave irradiation method. J. Mater. Res. 33, 1534 (2018).

    Article  CAS  Google Scholar 

  33. Y. Pan, Y. Shen, Q. Jin, and S. Zhu: Promotional effect of Ba additives on MnCeOx/TiO2 catalysts for NH3-SCR of NO at low temperature. J. Mater. Res. 33, 2414 (2018).

    Article  CAS  Google Scholar 

  34. F. Li, T. Han, H. Wang, X. Zheng, J. Wan, and B. Ni: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).

    Article  CAS  Google Scholar 

  35. L. Yan, S. Dong, Y. Zhang, L. Wang, Y. Gang, S. Fei, S. Deng, X. Zhang, and S. Zhang: Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. J. Mater. Res. 32, 757 (2017).

    Article  CAS  Google Scholar 

  36. M. Behpour and V. Atouf: Study of the photocatalytic activity of nanocrystalline S,N-codoped TiO2 thin films and powders under visible and sun light irradiation. Appl. Surf. Sci. 258, 6595 (2012).

    Article  CAS  Google Scholar 

  37. A.P. Bhirud, S.D. Sathaye, R.P. Waichal, J.D. Ambekar, C.J. Park, and B.B. Kale: In situ preparation of N–TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light. Nanoscale 7, 5023 (2015).

    Article  CAS  Google Scholar 

  38. J. Li, X. Xu, X. Liu, W. Qin, and L. Pan: Novel cake-like N-doped anatase/rutile mixed phase TiO2 derived from metal–organic frameworks for visible light photocatalysis. Ceram. Int. 43, 835 (2017).

    Article  CAS  Google Scholar 

  39. Y. Liu, K. Mu, J. Zhong, K. Chen, Y. Zhang, G. Yang, L. Wang, S. Deng, F. Shen, and X. Zhang: Design of a solar-driven TiO2 nanofilm on Ti foil by self-structure modifications. RSC Adv. 5, 41437 (2015).

    Article  CAS  Google Scholar 

  40. F. Zhou, H. Song, H. Wang, S. Komarneni, and C. Yan: N-doped TiO2/sepiolite nanocomposites with enhanced visible-light catalysis: Role of N precursors. Appl. Clay Sci. 166, 9 (2018).

    Article  CAS  Google Scholar 

  41. W. Zhang, C. Wang, X. Liu, and J. Li: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).

    Article  CAS  Google Scholar 

  42. F. Wu, X. Li, W. Liu, and S. Zhang: Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Appl. Clay Sci. 405, 60 (2017).

    CAS  Google Scholar 

  43. J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).

    Article  CAS  Google Scholar 

  44. M.M. Islam and S. Basu: Understanding photoelectrochemical degradation of methyl orange using TiO2/Ti mesh as photocathode under visible light. J. Environ. Chem. Eng. 4, 3554 (2016).

    Article  CAS  Google Scholar 

  45. D. Liu, J. Zhou, J. Wang, R. Tian, X. Li, E. Nie, X. Piao, and Z. Sun: Enhanced visible light photoelectrocatalytic degradation of organic contaminants by F and Sn co-doped TiO2 photoelectrode. Chem. Eng. J. 344, 332 (2018).

    Article  CAS  Google Scholar 

  46. C. Chen, W. Ma, and J. Zhao: ChemInform abstract: Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem. Soc. Rev. 39, 4206 (2010).

    Article  CAS  Google Scholar 

  47. Y. Zhang, D. Gu, L. Zhu, and B. Wang: Highly ordered Fe3+/TiO2 nanotube arrays for efficient photocataltyic degradation of nitrobenzene. Appl. Surf. Sci. 420, 896 (2017).

    Article  CAS  Google Scholar 

  48. Q. Ma, H. Wang, H. Zhang, X. Cheng, M. Xie, and Q. Cheng: Fabrication of MnO2/TiO2 nanotube arrays photoelectrode and its enhanced visible light photoelectrocatalytic performance and mechanism. Sep. Purif. Technol. 189, 193 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Department of Sichuan Province (2017JZ0021, 2017SZ0039) and the Education Department of Sichuan Province (17ZA0298).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzong Zhang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Liu, Y., Zhang, Y. et al. Electro-assisted ammonium persulfate activation to promote the introduction of N and S into TiO2 film: Enhancing its photoelectrocatalytic performance under solar. Journal of Materials Research 34, 3573–3582 (2019). https://doi.org/10.1557/jmr.2019.274

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.274

Navigation