Skip to main content
Log in

Microstructures and tensile properties of off-stoichiometric Ni3Al–Ni3V pseudo-binary alloys

  • Novel Synthesis and Processing of Metals
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of off-stoichiometry on the microstructures and tensile properties of Ni3Al–Ni3V pseudo-binary alloys was investigated by a scanning electron microscope, a transmission electron microscope, Vickers hardness test, and high-temperature tensile test. As the alloy deviates from a just-stoichiometric composition toward Ni-rich one, the microstructures constituted by two ordered phases, Ni3Al and Ni3V changed to those constituted by two ordered phases, Ni3Al and Ni3V, and one disordered phase, Ni solid solution. Also, the deviation from the stoichiometric composition resulted in a decrease in flow strength as well as Vickers hardness and conversely increase in tensile elongation. Higher tensile elongation in the off-stoichiometric alloys was induced by the transition from intergranular fracturing to transgranular fracturing. The trade-off relation in the yield strength (or hardness) versus tensile elongation curve, which was drawn plotting the data obtained from the alloys with different off-stoichiometric compositions, was most excellent at 600 °C but rapidly became worse at high temperatures beyond 600 °C. It was demonstrated that the deviation to the off-stoichiometric composition in the two-phase Ni3Al–Ni3V pseudo-binary alloy system was a useful alloying parameter to improve the balance of the flow strength and tensile ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. H. Harada, M. Yamazaki, and Y. Koizumi: A series of nickel-base superalloys on γ–γ′ tie line of alloy inconel 713C. Tetsu-To-Hagane 65, 1049 (1979).

    Article  CAS  Google Scholar 

  2. R.C. Reed: The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, U.K., 2008).

    Google Scholar 

  3. Y. Nunomura, Y. Kaneno, H. Tsuda, and T. Takasugi: Dual multi-phase intermetallic alloys composed of geometrically close-packed Ni3X (X: Al, Ti, and V) type structures—I. Microstructures and their stabilities. Acta Mater. 54, 851 (2006).

    Article  CAS  Google Scholar 

  4. S. Shibuya, Y. Kaneno, M. Yoshida, and T. Takasugi: Dual multi-phase intermetallic alloys composed of geometrically close-packed Ni3X (X: Al, Ti, and V) type structures—II. Mechanical properties. Acta Mater. 54, 861 (2006).

    Article  CAS  Google Scholar 

  5. S. Shibuya, Y. Kaneno, H. Tsuda, and T. Takasugi: Microstructural evolution of dual multi-phase intermetallic alloys composed of geometrically close packed Ni3X (X: Al and V) type structures. Intermetallics 15, 338 (2007).

    Article  CAS  Google Scholar 

  6. S. Kobayashi, K. Sato, E. Hayashi, T. Osaka, T.J. Konno, Y. Kaneno, and T. Takasugi: Alloying effects on the phase equilibria among Ni(A1), Ni3Al(L12), and Ni3V(D022) phases. Intermetallics 23, 68 (2012).

    Article  CAS  Google Scholar 

  7. T. Moronaga, Y. Kaneno, S. Semboshi, and T. Takasugi: Microstructural stability and hardening behavior of Re-added dual two-phase Ni3Al and Ni3V intermetallic alloys. Philos. Mag. 95, 3859 (2015).

    Article  CAS  Google Scholar 

  8. T. Moronaga, Y. Kaneno, H. Tsuda, and T. Takasugi: Deformation microstructures of two-phase intermetallic alloy composed of Ni3Al and Ni3V in single crystalline form. Mater. Sci. Forum 706–709, 1077 (2012).

    Article  Google Scholar 

  9. R.A. Varin and M.B. Winnicka: Plasticity of structural intermetallic compounds. Mater. Sci. Eng., A 137, 93 (1991).

    Article  Google Scholar 

  10. A. Francois, G. Hug, and P. Veyssière: The fine structure of dislocations in Ni3V. Philos. Mag. A 66, 269 (1992).

    Article  CAS  Google Scholar 

  11. K. Hagihara, M. Mori, T. Kishimoto, and Y. Umakoshi: Change in microstructure by heat-treatment and corresponding deformation behavior in Ni3V single crystals. Mater. Sci. Forum 638–642, 1318 (2010).

    Article  Google Scholar 

  12. J.B. Singh, M. Sundararaman, and P. Mukhopadhyay: Propagation of stacking faults across domain boundaries in Ni–V and Ni–V–Nb alloys with D022 structure. Philos. Mag. A 80, 1983 (2000).

    Article  CAS  Google Scholar 

  13. T. Takasugi and Y. Kaneno: MRS Symp. Properties and application for two-phase intermetallic alloys composed of geometrically close packed Ni3X(X: Al and V) structures. Proc. Publ. 1128, 351 (2009).

    Google Scholar 

  14. K. Kawahara, T. Moronaga, Y. Kaneno, A. Kakitsuji, and T. Takasugi: Effect of Nb and Ti addition on microstructure and hardness of dual two-phase intermetallic alloys based on Ni3Al–Ni3V pseudo-binary alloy system. Mater. Trans. 51, 1395 (2010).

    Article  CAS  Google Scholar 

  15. S. Shibuya, Y. Kaneno, M. Yoshida, T. Shishido, and T. Takasugi: Mechanical properties of dual multi-phase single-crystal intermetallic alloy composed of geometrically close packed Ni3X (X: Al and V) type structures. Intermetallics 15, 119 (2007).

    Article  CAS  Google Scholar 

  16. W. Soga, Y. Kaneno, and T. Takasugi: Microstructure and mechanical property in dual two-phase intermetallic alloys composed of geometrically close-packed Ni3X (X: Al and V) containing Nb. Mater. Sci. Eng., A 473, 180 (2008).

    Article  Google Scholar 

  17. K. Kawahara, Y. Kaneno, and T. Takasugi: Microstructural factors affecting hardness property of dual two-phase intermetallic alloys based on Ni3Al–Ni3V pseudo-binary alloy system. Intermetallics 17, 938 (2009).

    Article  CAS  Google Scholar 

  18. T. Moronaga, S. Ishii, Y. Kaneno, H. Tsuda, and T. Takasugi: Aging effect on microstructure and hardness of two-phase Ni3Al–Ni3V intermetallic alloys containing Ta and Re. Mater. Sci. Eng., A 539, 30 (2012).

    Article  CAS  Google Scholar 

  19. K. Ioroi, Y. Kaneno, S. Semboshi, and T. Takasugi: Effect of transition metal addition on microstructure and hardening behavior of two-phase Ni3Al–Ni3V intermetallic alloys. Materialia 5, 100174 (2019).

    Article  Google Scholar 

  20. D. Edatsugi, Y. Kaneno, S. Semboshi, and T. Takasugi: Fine precipitation in the channel region of dual two-phase Ni3Al and Ni3V intermetallic alloys added by Mo and W. Metall. Mater. Trans. A 47, 998 (2016).

    Article  CAS  Google Scholar 

  21. A. Uekami, S. Semboshi, Y. Kaneno, and T. Takasugi: Effects of tungsten addition and isothermal annealing on microstructural evolution and hardening behavior of two-phase Ni3Al–Ni3V intermetallic alloys. Mater. Trans. 59, 204 (2018).

    Article  CAS  Google Scholar 

  22. O. Noguchi, Y. Oya, and T. Suzuki: The effect of nonstoichiometry on the positive temperature dependence of strength of Ni3AI and Ni3Ga. Metall. Trans. A 12, 1647 (1981).

    Article  CAS  Google Scholar 

  23. K. Aoki: Ductilization of L12 intermetallic compound Ni3Al by microalloying with boron. Mater. Trans., JIM 31, 443 (1990).

    Article  CAS  Google Scholar 

  24. C.T. Liu, C.L. White, and J.A. Horton: Effect of boron on grain-boundaries in Ni3Al. Acta Metall. 33, 213 (1985).

    Article  CAS  Google Scholar 

  25. T. Takasugi, N. Masahashi, and O. Izumi: Electronic and structural studies of grain boundary strength and fracture in L12 ordered alloys—III. On the effect of stoichiometry. Acta Metall. 35, 381 (1987).

    Article  CAS  Google Scholar 

  26. W.C. Johnson and J.K. Lee: Elastic interaction energy of two spherical precipitates in an anisotropic matrix. Metall. Trans. A 10, 1141 (1979).

    Article  Google Scholar 

  27. T. Miyazaki, H. Imamura, H. Mori, and T. Kozakai: Theoretical and experimental investigations on elastic interactions between γ′-precipitates in a Ni–Al alloy. J. Mater. Sci. 16, 1197 (1981).

    Article  CAS  Google Scholar 

  28. H. Zapolsky, C. Pareige, L. Marteau, and D. Blavette: Atom probe analyses and numerical calculation of ternary phase diagram in Ni–Al–V system. Calphad 25, 125 (2001).

    Article  CAS  Google Scholar 

  29. S. Takeuchi and E. Kuramoto: Temperature and orientation dependence of the yield stress in Ni3Ga single crystals. Acta Metall. 21, 415 (1973).

    Article  CAS  Google Scholar 

  30. D.P. Pope and S.S. Ezz: Mechanical properties of Ni3Al and nickel-base alloys with high volume fraction of γ′. Int. Met. Rev. 29, 136 (1984).

    Article  CAS  Google Scholar 

  31. R.A. Mulford and D.P. Pope: The yield stress of Ni3(Al, W). Acta Metall. 21, 1375 (1973).

    Article  CAS  Google Scholar 

  32. K. Aoki and O. Izumi: The relation between the defect hardening and substitutional solid solution hardening in an intermetallic compound Ni3Al. Phys. Status Solidi A 88, 587 (1976).

    Article  Google Scholar 

  33. D. Imajo, Y. Kaneno, and T. Takasugi: Effect of Ta substitution method on the mechanical properties of Ni3(Si,Ti) intermetallic alloy. Mater. Sci. Eng., A 588, 228 (2013).

    Article  CAS  Google Scholar 

  34. F.H. Hayes, P. Rogl, and E. Schmid: Ternary Alloys, G. Petzow and G. Effenberg, ed. (VCH, Weinheim, 1993); p. 8.

    Google Scholar 

  35. N.S. Stoloff and R.G. Davies: The mechanical properties of ordered alloys. Prog. Mater. Sci. 13, 1 (1968).

    Article  Google Scholar 

  36. N.S. Stoloff: Strengthening Method in Crystals (Elsevier, Amsterdom, 1971); pp. 193–259.

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. M. Nagasako, Mr. E. Aoyagi, and Mr. S. Itoh of the Institute for Materials Research (IMR) of Tohoku University for their experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Takasugi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioroi, K., Semboshi, S., Kaneno, Y. et al. Microstructures and tensile properties of off-stoichiometric Ni3Al–Ni3V pseudo-binary alloys. Journal of Materials Research 34, 3061–3070 (2019). https://doi.org/10.1557/jmr.2019.269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.269

Navigation