Skip to main content
Log in

Fabrication and characterization of textured Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite substrates via solid-clad-by-liquid method

  • Novel Synthesis and Processing of Metals
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel solid-clad-by-liquid method was developed to form a 10-m long by 10-mm wide by 80-µm thick Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite tape. Three deformation routes (cold rolling, cold rolling with intermediate annealing, and cold rolling combined with warm rolling) have been investigated in short Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite substrate. To optimize the dynamic continuous annealing parameters for the long composite substrates, air-cooled and furnace-cooled annealing procedures were compared in short Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite substrates. Improved cube texture of 98.7% in a 10-m long by 10-mm wide by 80-µm thick Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite substrate was achieved via warm rolling deformation at 550 °C and two-step dynamic continuous annealing (750 °C for 1 h followed by 1200 °C for 1 h). The yield strength, Curie temperature, and saturation magnetization of 176 MPa, 324 K, and 18 emu/g, respectively, were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. C. Cantoni, D.K. Christen, A. Goyal, L. Heatherly, F.A. List, G.W. Ownby, D.M. Zehner, M. Christen, and C.M. Rouleau: Growth of oxide seed layers on Ni and other technologically interesting metal substrates: Issues related to formation and control of sulfur superstructures for texture optimization. IEEE Trans. Appl. Supercond. 13, 2646 (2003).

    Article  CAS  Google Scholar 

  2. P.P. Bhattacharjee, N. Tsuji, and R.K. Ray: Effect of initial grain size on the evolution of {001}〈100〉 texture in severely deformed and annealed high-purity nickel. Metall. Mater. Trans. A 42, 2769 (2011).

    Article  CAS  Google Scholar 

  3. V.S. Sarma, J. Eickemeyer, C. Mickel, L. Schultz, and B. Holzapfel: On the cold rolling textures in some fcc Ni–W alloys. Mater. Sci. Eng. A 380, 30 (2004).

    Article  Google Scholar 

  4. Evico: Superconducor material (2019). Available at: http://www.evico.de/supraleiter-material/texturierte-substrate (accessed August 2, 2019).

  5. D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C.E. Klabunde, D.F. Lee, B.C. Sales, and F.A. List: Epitaxial YBa2Cu3O7 on biaxially textured nickel (001): An approach to superconducting tapes with high critical current density. Science 274, 755 (1996).

    Article  CAS  Google Scholar 

  6. Y.X. Zhou, S.V. Ghalsasi, and M. Hanna: Fabrication of cube-textured Ni–9 at.% W substrate for YBCO superconducting wires using powder metallurgy. IEEE Trans. Appl. Supercond. 17, 3428 (2007).

    Article  CAS  Google Scholar 

  7. J. Eickemeyer, R. Huhne, A. Guth, C. Rodig, U. Gaitzsch, J. Freudenberger, L. Schultz, and B. Holzapfel: Textured Ni–9.0 at.% W substrate tapes for YBCO-coated conductors. Supercond. Sci. Technol. 23, 085012 (2010).

    Article  Google Scholar 

  8. V.S. Sarma, J. Eickemeyer, L. Schultz, and B. Holzapfel: Recrystallisation texture and magnetisation behaviour of some FCC Ni–W alloys. Scr. Mater. 50, 953 (2004).

    Article  CAS  Google Scholar 

  9. R. Hühne, J. Eickemeyer, V.S. Sarma, A. Güth, T. Thersleff, J. Freudenberger, O. de Haas, M. Weigand, J.H. Durrel, L. Schultz, and B. Holzapfel: Application of textured highly alloyed Ni–W tapes for preparing coated conductor architectures. Supercond. Sci. Technol. 23, 034015 (2010).

    Article  Google Scholar 

  10. U. Gaitzsch, J. Hänisch, R. Hühne, C. Rodig, J. Freudenberger, B. Holzapfel, and L. Schultz: Highly alloyed Ni–W substrates for low AC loss applications. Supercond. Sci. Technol. 26, 085024 (2013).

    Article  CAS  Google Scholar 

  11. J. Eickemeyer, D. Selbmann, R. Opitz, B. de Boer, B. Holzapfel, L. Schultz, and U. Miller: Nickel-refractory metal substrate tapes with high cube texture stability. Supercond. Sci. Technol. 14, 152 (2001).

    Article  CAS  Google Scholar 

  12. Y. Zhao, H.L. Suo, M. Liu, D. He, Y.X. Zhang, and M.L. Zhou: Mechanically reinforced and biaxially textured Ni alloys composite substrates for coated conductors. Phys. C 460, 1427 (2007).

    Article  Google Scholar 

  13. V.S. Sarma, J. Eickemeyer, L. Schultz, and B. Holzapfel: Development of high strength and strongly cube textured Ni–5% W/Ni–10% W composite substrate tapes for coated conductor application. Trans. Indian Inst. Met. 57, 651 (2004).

    CAS  Google Scholar 

  14. A. Goyal: Method for making biaxially textured articles by plastic deformation. U.S. Patent No. 6375768 B1, April 23, 2002.

  15. H. Yoshino, M. Yamazaki, and T.D. Thanh: Preparation of a 10-m-long coated conductor on Ag–Cu/Ag–Ni clad tape by PLD. Physica C 392–396, 847 (2003).

    Article  Google Scholar 

  16. V.S. Sarma, B. de Boer, J. Eickemeyer, and B. Holzapfel: On the development of high strength and bi-axially textured Ni–3% W/Ni–10% Cr–1.5% Al composite substrate for coated conductor application. Scr. Mater. 48, 1167 (2003).

    Article  CAS  Google Scholar 

  17. Y.W. Ma, Z.S. Gao, Y.P. Qi, X.P. Zhang, L. Wang, Z.Y. Zhang, and D.L. Wang: Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method. Physica C 469, 651 (2009).

    Article  CAS  Google Scholar 

  18. L. Waltz, D. Retraint, A. Roos, and P. Olier: Combination of surface nanocrystallization and co-rolling: Creating multilayer nanocrystalline composites. Scr. Mater. 60, 21 (2009).

    Article  CAS  Google Scholar 

  19. V.S. Sarma, J. Eickemeyer, A. Singh, L. Schultz, and B. Holzapfel: Development of high strength and strongly cube textured Ni–4.5% W/Ni–15% Cr composite substrate for coated conductor application. Acta Mater. 51, 4919 (2003).

    Article  CAS  Google Scholar 

  20. E. Zumelzu, F. Rull, and A.A. Boettcher: Characterization and micro- and ultra-structural analysis of PET-based Co-rolled composite electrolytic chromium coated steel (ECCS). J. Mater. Process. Technol. 173, 34 (2006).

    Article  CAS  Google Scholar 

  21. M.M. Gao, H.L. Suo, Y. Zhao, J-C. Grivel, Y.L. Cheng, L. Ma, R. Wang, P.K. Gao, J.H. Wang, M. Liu, Y. Wang, and S.Z. Kou: Characterization and properties of an advanced composite substrate for YBCO-coated conductors. Acta Mater. 58, 1299 (2010).

    Article  CAS  Google Scholar 

  22. Y. Zhao, H.L. Suo, M. Liu, D. He, Y.X. Zhang, L. Ma, and M.L. Zhou: Highly reinforced and cube textured Ni alloy composite substrates by a hybrid route. Acta Mater. 55, 2609 (2007).

    Article  CAS  Google Scholar 

  23. H.L. Suo, L. Ma, M.M. Gao, Y.C. Meng, Y. Wang, M. Liu, Y. Zhao, and J-C. Grivel: Development of cube textured Ni–W alloy substrates used for coated conductors. J. Phys.: Conf. Ser. 507, 022039 (2014).

    CAS  Google Scholar 

  24. D.L. Shi, W.Z. Zhou, and W.Y. Liang: Application Study of High Temperature Superconductor, 1st ed. (Shanghai Scientific and Technical Publishers, Shanghai, China, 2008); p. 164.

    Google Scholar 

  25. H.L. Suo, Y. Zhao, M. Liu, S. Ye, Y.H. Zhu, D. He, L.J. Ma, Y. Ji, and M.L. Zhou: A novel approach using powder metallurgy for strengthened RABiTS composite substrates for coated superconductors. Supercond. Sci. Technol. 21, 025006 (2008).

    Article  Google Scholar 

  26. H.L. Suo, Y. Zhao, M. Liu, L. Ma, D. He, Y.X. Zhang, and M.L. Zhou: Preparation of cube textured Ni5W/Ni9W composite substrate for YBCO coated conductors. IEEE Trans. Appl. Supercond. 17, 3420 (2007).

    Article  CAS  Google Scholar 

  27. H.L. Suo, Y. Zhao, M. Liu, Y.X. Zhang, D. He, L. Ma, Y. Ji, and M.L. Zhou: Technique for developing highly strengthened and biaxially textured composite substrates for coated superconductor tapes. Acta Mater. 56, 23 (2008).

    Article  CAS  Google Scholar 

  28. P.K. Gao, H.L. Suo, M.M. Gao, Y. Zhao, L. Ma, M. Liu, J.H. Wang, and H.Q. Qiu: Long Ni alloyed composite tapes for coated conductors fabricated by sparking plasma sintering method. Chin. J. Nonferrous Met. 20, 2387 (2010).

    Article  CAS  Google Scholar 

  29. Y.C. Meng: Study on the Textured Ni8W Alloy and Composite Substrates Used for Coated Conductors (Beijing University of Technology: College of Materials Science and Engineering, 2014, Beijing, China).

    Google Scholar 

  30. R. Ganesh Narayanan: Powder metallurgy—Basics & applications (2019). Available at: https://www.iitg.ac.in/engfac/ganu/public_html/Powdermetallurgy.pdf (accessed 2 August 2019).

  31. H. Tian: Study on Mechanism of Cube Texture Formation in Copper Nickel Alloy Substrates Used for Coated Conductors (Beijing University of Technology: College of Materials Science and Engineering, 2013, Beijing, China).

    Google Scholar 

  32. J. Cui, H.L. Suo, J.H. Wang, J-C. Grivel, L. Ma, C.Y. Li, Y.T. Ji, S. Kausar, M. Liu, and Y. Wang: Effect of different deformation and annealing procedures on non-magnetic textured Cu60Ni40 alloy substrates. Int. J. Miner. Metall. Mater. 25, 930 (2018).

    Article  CAS  Google Scholar 

  33. C. Maurice and J.H. Driver: Hot rolling textures of f.c.c. metals-part I. Experimental results on Al single and polycrystals. Acta Mater. 45, 4627 (1997).

    Article  CAS  Google Scholar 

  34. A. Wakeel, T.L. Huang, G.L. Wu, O.V. Mishin, and X. Huang: Development of a strong Goss texture during annealing of a heavily rolled Al–0.3% Cu alloy. IOP Conference Series: Materials Science and Engineering 82, 012050 (2015) In 17th International Conference on Textures of Materials (Dresden University of Technology, Dresden, Germany, 2015).

    Google Scholar 

  35. Y.R. Liang, H. Tian, H.L. Suo, P. Wang, Y.C. Meng, L. Ma, and M. Liu: Recrystallization and cube texture formation in heavily cold-rolled Ni7W alloy substrates for coated conductors. J. Mater. Res. 30, 1686 (2015).

    Article  CAS  Google Scholar 

  36. D.N. Lee: The evolution of recrystallization textures from deformation textures. Scr. Metall. Mater. 32, 1689 (1995).

    Article  CAS  Google Scholar 

  37. H.J. Xu: Material Science Foundation, 1st ed. (Beijing University of Technology Press, Beijing, England, 2001); p. 393.

    Google Scholar 

  38. E.D. Specht, A. Goyal, D.F. Lee, F.A. List, D.M. Kroeger, M. Paranthaman, R.K. Williams, and D.K. Christen: Cube-textured nickel substrates for high-temperature superconductors. Supercond. Sci. Technol. 11, 945 (1998).

    Article  CAS  Google Scholar 

  39. S. Graca, R. Colaco, R.A. Carvalho, and R. Vilar: Determination of dislocation density from hardness measurements in metal. Mater. Lett. 62, 3812 (2008).

    Article  CAS  Google Scholar 

  40. M.X. Li: Study on the Preparation of Long Ni5W Alloy Substrates Used for Coated Conductors (Beijing University of Technology: College of Materials Science and Engineering, 2013, Beijing, China).

    Google Scholar 

  41. L. Bracke, K. Verbeken, and L.A.I. Kestens: Texture generation and implications in TWIP steels. Scr. Mater. 66, 1007 (2012).

    Article  CAS  Google Scholar 

  42. J.F. Peng, C. Song, M.X. Shen, J.F. Zheng, Z.R. Zhou, and M.H. Zhu: An experimental study on bending fretting fatigue characteristics of 316L austenitic stainless steel. Tribol. Int. 44, 1417 (2011).

    Article  CAS  Google Scholar 

  43. A.O. Ijaduola, J.R. Thompson, A. Goyal, C.L.H. Thieme, and K. Marken: Magnetism and ferromagnetic loss in Ni–W textured substrates for coated conductors. Physica C 403, 163 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (51571002), the General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (KM201810005010), the Beijing Municipal Natural Science Foundation (2172008), by the Evaluation Research for the Performance of MgB2 Tapes (GH-201809CG005), and 211 Program of Beijing City and Beijing University of Technology, by the Program of Top Disciplines Construction in Beijing (PXM2019_014204_500031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongli Suo.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Suo, H., Liang, Y. et al. Fabrication and characterization of textured Ni–5 at.% W/Ni–9.3 at.% W/Ni–5 at.% W composite substrates via solid-clad-by-liquid method. Journal of Materials Research 34, 3141–3150 (2019). https://doi.org/10.1557/jmr.2019.259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.259

Navigation