Skip to main content
Log in

Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode

  • Energy Conversion and Storage Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Metal oxides are promising candidates as the anodes of next-generation lithium ion batteries. However, the low electronic conductivities hinder their practical applications. Herein, through a facile calcination process using ammonium bicarbonate (NH4HCO3) as the N source, the nitrogen heteroelement was introduced into the ZnO/CoO micro-/nanospheres, which greatly improves the conductivity of the composites. As the lithium-ion battery anode, the N-doped ZnO/CoO micro-/nanosphere demonstrates much enhanced electrochemical performance. It displays a high initial capacity of 911.8 mA h/g at a current density of 0.2 A/g and long-term cycling stability, with a reversible capacity of 977.8 mA h/g remained after 500 cycles at a current density of 1 A/g. Furthermore, the N-doped ZnO/CoO composite presents an outstanding rate performance, with 605 mA h/g remained even at 5 A/g. The excellent electrochemical properties make N-doped ZnO/CoO micro-/nanospheres a promising candidate as high-performance anodes for next-generation rechargeable LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. A. Manthiram: Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2, 373 (2011).

    Article  CAS  Google Scholar 

  2. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 226, 272 (2013).

    Article  CAS  Google Scholar 

  3. B. Scrosati, J. Hassoun, and Y-K. Sun: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287 (2011).

    Article  CAS  Google Scholar 

  4. L. Shen, S. Chen, J. Maier, and Y. Yu: Carbon-coated Li3VO4 spheres as constituents of an advanced anode material for high-rate long-life lithium-ion batteries. Adv. Mater. 29, 1701571–1701577 (2017).

    Article  Google Scholar 

  5. X. Xu, R. Zhao, W. Ai, B. Chen, H. Du, L. Wu, H. Zhang, W. Huang, and T. Yu: Controllable design of MoS2 nanosheets anchored on nitrogen-doped graphene: Toward fast sodium storage by tunable pseudocapacitance. Adv. Mater. 30, 1800658–1800664 (2018).

    Article  Google Scholar 

  6. M.R. Lukatskaya, B. Dunn, and Y. Gogotsi: Multidimensional materials and device architectures for future hybrid energy storage. Nat. Commun. 7, 12647–12659 (2016).

    Article  Google Scholar 

  7. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.M. Tarascon: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000).

    Article  CAS  Google Scholar 

  8. L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang: Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 4, 2682 (2011).

    Article  CAS  Google Scholar 

  9. D. Jiaojiao, Y. Xiaoliang, H. Yanbing, L. Baohua, Y. Quan-Hong, and K. Feiyu: A sliced orange-shaped ZnCo2O4 material as anode for high-performance lithium ion battery. Energy Storage Mater. 6, 61 (2017).

    Article  Google Scholar 

  10. Y. Sharma, N. Sharma, G.V.S. Rao, and B.V.R. Chowdari: Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 17, 2855 (2007).

    Article  CAS  Google Scholar 

  11. N. Du, Y. Xu, H. Zhang, J. Yu, C. Zhai, and D. Yang: Porous ZnCo2O4 nanowires synthesis via sacrificial templates: High-performance anode materials of Li-ion batteries. Inorg. Chem. 50, 3320 (2011).

    Article  CAS  Google Scholar 

  12. H. Liu and J. Wang: One-pot synthesis of ZnCo2O4 nanorod anodes for high power lithium ions batteries. Electrochim. Acta 92, 371 (2013).

    Article  CAS  Google Scholar 

  13. W. Luo, X. Hu, Y. Sun, and Y. Huang: Electrospun porous ZnCo2O4 nanotubes as a high-performance anode material for lithium-ion batteries. J. Mater. Chem. 22, 8916 (2012).

    Article  CAS  Google Scholar 

  14. Z. Wang, L. Zhou, and X.W. Lou: Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 24, 1903 (2012).

    Article  CAS  Google Scholar 

  15. Y. Zhu, C. Cao, J. Zhang, and X. Xu: Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 3, 9556 (2015).

    Article  CAS  Google Scholar 

  16. Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, and X. Sun: Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 6, 1502175 (2016).

    Article  Google Scholar 

  17. J. Mei, T. Liao, L. Kou, and Z. Sun: Two-Dimensional metal oxide nanomaterials for next-generation rechargeable batteries. Adv. Mater. 29, 1700176 (2017).

    Article  Google Scholar 

  18. J. Mei, T. Liao, H. Spratt, G.A. Ayoko, X. Zhao, and Z. Sun: Honeycomb-inspired heterogeneous bimetallic Co–Mo oxide nanoarchitectures for high-rate electrochemical lithium storage. Small Methods 3, 1900055 (2019).

    Article  Google Scholar 

  19. A.K. Rai, T. Trang Vu, B.J. Paul, and J. Kim: Synthesis of nano-sized ZnCo2O4 anchored with graphene nanosheets as an anode material for secondary lithium ion batteries. Electrochim. Acta 146, 577 (2014).

    Article  CAS  Google Scholar 

  20. B. Liu, X. Wang, B. Liu, Q. Wang, D. Tan, W. Song, X. Hou, D. Chen, and G. Shen: Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Res. 6, 525 (2013).

    Article  CAS  Google Scholar 

  21. Q. Ru, X. Song, Y. Mo, L. Guo, and S. Hu: Carbon nanotubes modified for ZnCo2O4 with a novel porous polyhedral structure as anodes for lithium ion batteries with improved performances. J. Alloys Compd. 654, 586 (2016).

    Article  CAS  Google Scholar 

  22. Y. Chunshuang, Z. Yue, L. Yutao, F. Zhiwei, P. Lele, Z. Xin, C. Gang, and Y. Guihua: Local built-in electric field enabled in carbon-doped Co3O4 nanocrystals for superior lithium-ion storage. Adv. Funct. Mater. 28, 1705951 (2018).

    Article  Google Scholar 

  23. T. Subburaj, K. Prasanna, K.J. Kim, P.R. Ilango, Y.N. Jo, and C.W. Lee: Structural and electrochemical evaluation of bismuth doped lithium titanium oxides for lithium ion batteries. J. Power Sources 280, 23 (2015).

    Article  CAS  Google Scholar 

  24. J. Xu, Z. Liao, J. Zhang, B. Gao, P.K. Chu, and K. Huo: Heterogeneous phosphorus-doped WO3−x/nitrogen-doped carbon nanowires with high rate and long life for advanced lithium-ion capacitors. J. Mater. Chem. A 6, 6916 (2018).

    Article  CAS  Google Scholar 

  25. Y. Wang, X. Xue, P. Liu, C. Wang, X. Yi, Y. Hu, L. Ma, G. Zhu, R. Chen, and T. Chen: Atomic substitution enabled synthesis of vacancy-rich two-dimensional black TiO2−x nanoflakes for high-performance rechargeable magnesium batteries. ACS Nano 12, 12492 (2018).

    Article  CAS  Google Scholar 

  26. G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, and H. Wu: Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472 (2019).

    Article  CAS  Google Scholar 

  27. M. Xu, S. He, H. Chen, G. Cui, L. Zheng, B. Wang, and M. Wei: TiO2−x-modified ni nanocatalyst with tunable metal–support interaction for water–gas shift reaction. ACS Catal. 7, 7600 (2017).

    Article  CAS  Google Scholar 

  28. S. Liu, J. Zhou, and H. Song: 2D Zn-hexamine coordination frameworks and their derived N-rich porous carbon nanosheets for ultrafast sodium storage. Adv. Energy Mater. 8, 1800569 (2018).

    Article  Google Scholar 

  29. X. Huang, X. Xia, Y. Yuan, and F. Zhou: Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim. Acta 56, 4960 (2011).

    Article  CAS  Google Scholar 

  30. B. Das, M. Reddy, G.S. Rao, and B. Chowdari: Synthesis of porous-CoN nanoparticles and their application as a high capacity anode for lithium-ion batteries. J. Mater. Chem. 22, 17505 (2012).

    Article  CAS  Google Scholar 

  31. B. Das, M. Reddy, P. Malar, T. Osipowicz, G.S. Rao, and B. Chowdari: Nanoflake CoN as a high capacity anode for Li-ion batteries. Solid State Ionics 180, 1061 (2009).

    Article  CAS  Google Scholar 

  32. J. Deng, X. Yu, X. Qin, B. Li, and F. Kang: Carbon sphere-templated synthesis of porous yolk–shell ZnCo2O4 spheres for high-performance lithium storage. J. Alloys Compd. 780, 65 (2019).

    Article  CAS  Google Scholar 

  33. J. Deng, X. Yu, X. Qin, D. Zhou, L. Zhang, H. Duan, F. Kang, B. Li, and G. Wang: Co–B nanoflakes as multifunctional bridges in ZnCo2O4 micro-/nanospheres for superior lithium storage with boosted kinetics and stability. Adv. Energy Mater. 9, 1803612 (2019).

    Article  Google Scholar 

  34. J. Deng, X. Yu, X. Qin, B. Liu, Y-B. He, B. Li, and F. Kang: Controlled synthesis of anisotropic hollow ZnCo2O4 octahedrons for high-performance lithium storage. Energy Storage Mater. 11, 184 (2018).

    Article  Google Scholar 

  35. J. Deng, X. Yu, Y. He, B. Li, Q-H. Yang, and F. Kang: A sliced orange-shaped ZnCo2O4 material as anode for high-performance lithium ion battery. Energy Storage Mater. 6, 61 (2017).

    Article  Google Scholar 

  36. Y. Jiang, Y. Song, Z. Pan, Y. Meng, L. Jiang, Z. Wu, P. Yang, Q. Gu, D. Sun, and L. Hu: Rapid amorphization in metastable CoSeO3·H2O nanosheets for ultrafast lithiation kinetics. ACS Nano 12, 5011 (2018).

    Article  CAS  Google Scholar 

  37. Y. Li, Y. Zhao, C. Ma, and Y. Zhao: Promising carbon matrix derived from willow catkins for the synthesis of SnO2/C composites with enhanced electrical performance for Li-ion batteries. Nano 13, 1850087 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Natural Science Foundation of China (51502147), Natural Science Foundation of Inner Mongolia (2015BS0510), China Postdoctoral Science Foundation (2017M611205), Fund of Key Laboratory of Advanced Materials of Ministry of Education (No. 2016AML08), Inner Mongolia scientific and technological achievements transformation project (CGZH2018132), and Inner Mongolia Innovation project for postgraduates (Nos. B20171012804Z and S20171012807).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding Nan or Jun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Li, S., Wang, J. et al. Nitrogen-doped zinc/cobalt mixed oxide micro-/nanospheres for high-rate lithium-ion battery anode. Journal of Materials Research 34, 3204–3211 (2019). https://doi.org/10.1557/jmr.2019.258

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.258

Navigation