Skip to main content
Log in

Multigeneration solution-processed method for silver nanotriangles exhibiting narrow linewidth (170 nm) absorption in near-infrared

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bottom-up assembly of nanomaterials using solution-processed methods is ideally suited for use in fabrication of large-area optoelectronic devices. Tailorable visible and near-infrared absorption in shaped nanostructured noble metals is strongly influenced by localized plasmon resonance effects. Obtaining sharp and selective absorption with solution-processed methods is a challenge and requires suitable control on the growth kinetics, which ultimately results in appropriate size and morphology of the final product. In this work, a photo-assisted multigenerational growth process for synthesis of silver nanotriangle ink with narrow linewidth absorbance is developed. This technique combines photochemical and seed-mediated growth approaches. The resulting ink exhibits a sharp absorption at 700 nm with full width at half maximum of 170 nm, verified by absorption as well as dynamic light scattering, transmission electron microscopy, and field emission scanning electron microscopy measurements. Numerical modeling using finite-difference time-domain calculations yields a close match with observed absorption and is used to examine electric field distribution and enhancement factor resonating at 720 nm. The synthesis technique is potentially useable for production of highly selective absorbers in solution phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. H.W. Choi, T. Zhou, M. Singh, and G.E. Jabbour: Recent developments and directions in printed nanomaterials. Nanoscale 7, 3338 (2015).

    Article  CAS  Google Scholar 

  2. M. Xiao, R. Jiang, F. Wang, C. Fang, J. Wang, and J.C. Yu: Plasmon-enhanced chemical reactions. J. Mater. Chem. A 1, 5790 (2013).

    Article  CAS  Google Scholar 

  3. F. Wang, C. Li, H. Chen, R. Jiang, L.D. Sun, Q. Li, J. Wang, J.C. Yu, and C.H. Yan: Plasmonic harvesting of light energy for suzuki coupling reactions. J. Am. Chem. Soc. 135, 5588 (2013).

    Article  CAS  Google Scholar 

  4. K. Yao, M. Salvador, C.C. Chueh, X.K. Xin, Y.X. Xu, D.W. deQuilettes, T. Hu, Y. Chen, D.S. Ginger, and A.K.Y. Jen: A general route to enhance polymer solar cell performance using plasmonic nanoprisms. Adv. Energy Mater. 4, 1400206 (2014).

    Article  CAS  Google Scholar 

  5. H. Wang, J.W. Lim, F.M. Mota, Y.J. Jang, M. Yoon, H. Kim, W. Hu, Y.Y. Noh, and D.H. Kim: Plasmon-mediated wavelength-selective enhanced photoresponse in polymer photodetectors. J. Mater. Chem. C 5, 399 (2017).

    Article  CAS  Google Scholar 

  6. C.J. Murphy, A.M. Gole, J.W. Stone, P.N. Sisco, A.M. Alkilany, E.C. Goldsmith, and S.C. Baxter: Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721 (2008).

    Article  CAS  Google Scholar 

  7. G. Tagliabue, A.S. Jermyn, R. Sundararaman, A.J. Welch, J.S. DuChene, R. Pala, A.R. Davoyan, P. Narang, and H.A. Atwater: Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. 9, 3394 (2018).

    Article  CAS  Google Scholar 

  8. E.L. Runnerstrom, A. Llordés, S.D. Lounis, and D.J. Milliron: Nanostructured electrochromic smart windows: Traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 50, 10555 (2014).

    Article  CAS  Google Scholar 

  9. A. Llordés, Y. Wang, A.F. Martinez, P. Xiao, T. Lee, A. Poulain, O. Zandi, C.A. Saez Cabezas, G. Henkelman, and D.J. Milliron: Linear topology in amorphous metal oxide electrochromic networks obtained via low-temperature solution processing. Nat. Mater. 15, 1267 (2016).

    Article  CAS  Google Scholar 

  10. V.B. Llorente, V.M. Dzhagan, N. Gaponik, R.A. Iglesias, D.R.T. Zahn, and V. Lesnyak: Electrochemical tuning of localized surface plasmon resonance in copper chalcogenide nanocrystals. J. Phys. Chem. C 121, 18244 (2017).

    Article  CAS  Google Scholar 

  11. A. Garreau, M. Tabatabaei, R. Hou, G.Q. Wallace, P.R. Norton, and F. Lagugné-Labarthet: Probing the plasmonic properties of heterometallic nanoprisms with near-field fluorescence microscopy. J. Phys. Chem. C 120, 20267 (2016).

    Article  CAS  Google Scholar 

  12. F.M. Wisser, B. Schumm, G. Mondin, J. Grothe, and S. Kaskel: Precursor strategies for metallic nano and micropatterns using soft lithography. J. Phys. Chem. C 3, 2717 (2015).

    CAS  Google Scholar 

  13. D. Ibañez, D. Izquierdo, C.F. Blanco, A. Heras, and A. Colina: Electrode-position of silver nanoparticles in the presence of different complexing agents by time-resolved Raman spectroelectrochemistry. J. Raman Spectrosc. 49, 482 (2018).

    Article  CAS  Google Scholar 

  14. N.C. Raut and K. Al-Shamery: Inkjet printing metals on flexible materials for plastic and paper electronics. J. Mater. Chem. C 6, 1618 (2018).

    Article  CAS  Google Scholar 

  15. D.J. Finn, M. Lotya, and J.N. Coleman: Inkjet printing of silver nanowire networks. ACS Appl. Mater. Interfaces 7, 9254 (2015).

    Article  CAS  Google Scholar 

  16. M. Singh, H.M. Haverinen, Y. Yoshioka, and G.E. Jabbour: Active electronics. In Inkjet Technology for Digital Fabrication, I.M. Hutchings and G.D. Martin, eds. (John Wiley & Sons, USA, 2012); p. 207.

    Google Scholar 

  17. M. Singh, H.M. Haverinen, P. Dhagat, and G.E. Jabbour: Inkjet printing and its applications. Adv. Mater. 22, 673 (2010).

    Article  CAS  Google Scholar 

  18. A.T. Vicente, A. Araújo, M.J. Mendes, D. Nunes, M.J. Oliveira, O.S. Sobrado, M.P. Ferreira, H. Águas, E. Fortunato, and R. Martins: Multifunctional cellulose-paper for light harvesting and smart sensing applications. J. Mater. Chem. C 6, 3143 (2018).

    Article  Google Scholar 

  19. E. Ringe, R.P. Van Duyne, and L.D. Marks: Kinetic and thermodynamic modified wulff constructions for twinned nanoparticles. J. Phys. Chem. C 117, 15859 (2013).

    Article  CAS  Google Scholar 

  20. W.J. Ho, S. Fen, and J.J. Liu: Plasmonic effects of silver nanoparticles with various dimensions embedded and non-embedded in silicon dioxide antireflective coating on silicon solar cells. Appl. Phys. A 124, 29 (2018).

    Article  CAS  Google Scholar 

  21. G.P. Murphy, J.J. Gough, L.J. Higgins, V.D. Karanikolas, K.M. Wilson, J.A.G. Coindreau, V.Z. Zubialevich, P.J. Parbrook, and A.L. Bradley: Ag colloids and arrays for plasmonic non-radiative energy transfer from quantum dots to a quantum well. Nanotechnology 28, 15401 (2017).

    Article  CAS  Google Scholar 

  22. S. Ye, J. Song, Y. Tian, L. Chen, D. Wang, H. Niu, and J. Qu: Photochemically grown silver nanodecahedra with precise tuning of plasmonic resonance. Nanoscale 7, 12706 (2015).

    Article  CAS  Google Scholar 

  23. R. Shankar, V. Shahi, and U. Sahoo: Comparative study of linear poly(alkylarylsilane)s as reducing agents toward Ag(I) and Pd(II) ions synthesis of polymer-metal nanocomposites with variable size domains of metal nanoparticles. Chem. Mater. 22, 1367 (2010).

    Article  CAS  Google Scholar 

  24. B.H. Kim and J.S. Lee: One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp. Mater. Chem. Phys. 149, 678 (2015).

    Article  CAS  Google Scholar 

  25. N.G. Bastús, F. Merkoçi, J. Piella, and V. Puntes: Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: Kinetic control and catalytic properties. Chem. Mater. 26, 2836 (2014).

    Article  CAS  Google Scholar 

  26. Y.M. Park, B.G. Lee, J. Weon, and M.H. Kim: One-step synthesis of silver nanoplates with high aspect ratios: Using coordination of silver ions to enhance lateral growth. RSC Adv. 6, 95768 (2016).

    Article  CAS  Google Scholar 

  27. X. Li, W. Choy, H. Lu, W.E.I. Sha, and A. Ho: Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv. Funct. Mater. 23, 2728 (2013).

    Article  CAS  Google Scholar 

  28. M. Abulikemu, E.H. Da’as, H. Haverinen, D. Cha, M.A. Malik, and G.E. Jabbour: In situ synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing. Angew. Chem. 126, 430 (2014).

    Article  Google Scholar 

  29. Y. Hao, Y. Hao, Q. Sun, Y. Cui, Z. Li, T. Ji, H. Wang, and F. Zhu: Broadband EQE enhancement in organic solar cells with multiple-shaped silver nanoparticles: Optical coupling and interfacial engineering. Mater. Today Energy 3, 84 (2017).

    Article  Google Scholar 

  30. A.P. Kulkarni, K.M. Noone, K. Munechika, S.R. Guyer, and D.S. Ginger: Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett. 10, 1501 (2010).

    Article  CAS  Google Scholar 

  31. A. Kumar, S. Kim, and J.M. Nam: Plasmonically engineered nanoprobes for biomedical applications. J. Am. Chem. Soc. 138, 14509 (2016).

    Article  CAS  Google Scholar 

  32. T.R. Jensen, M.D. Malinsky, C.L. Haynes, and R.P.V. Duyne: Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. C 104, 10549 (2000).

    Article  CAS  Google Scholar 

  33. A.J. Haes, C.L. Haynes, A.D. McFarland, G.C. Schatz, R.P.V. Duyne, and S. Zou: Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 30, 368 (2005).

    Article  CAS  Google Scholar 

  34. X. Liu, L. Li, Y. Yang, Y. Yin, and C. Gao: One-step growth of triangular silver nanoplates with predictable sizes on a large scale. Nanoscale 6, 4513 (2014).

    Article  CAS  Google Scholar 

  35. C. Wu, X. Zhou, and J. Wei: Localized surface plasmon resonance of silver nanotriangles synthesized by a versatile solution reaction. Nanoscale Res. Lett. 10, 354 (2015).

    Article  CAS  Google Scholar 

  36. A.U. Khan, Z. Zhou, J. Krause, and G. Liu: Poly(vinylpyrrolidone)-free multistep synthesis of silver nanoplates with plasmon resonance in the near infrared range. Small 13, 1701715 (2017).

    Article  CAS  Google Scholar 

  37. C.W. Yen, H. Puig, J.O. Tam, J.G. Márquez, I. Bosch, K. Schifferli, and L. Gehrke: Multicolored silver nanoparticles for multiplexed disease diagnostics: Distinguishing dengue, yellow fever, and ebola viruses. Lab Chip 15, 1638 (2015).

    Article  CAS  Google Scholar 

  38. X. Zheng, Y. Peng, X. Cui, and W. Zheng: Modulation of the shape and localized surface plasmon resonance of silver nanoparticles via halide ion etching and photochemical regrowth. Mater. Lett. 173, 88 (2016).

    Article  CAS  Google Scholar 

  39. K.L. Shuford, M.A. Ratner, and G.C. Schatz: Multipolar excitation in triangular nanoprisms. J. Chem. Phys. 123, 114713 (2005).

    Article  CAS  Google Scholar 

  40. B. Tang, M. Zhang, Y. Yao, L. Sun, J. Li, S. Xu, W. Chen, W. Xu, and X. Wang: Photoinduced reversible shape conversion of silver nanoparticles assisted by TiO2. Phys. Chem. Chem. Phys. 16, 21999 (2014).

    Article  CAS  Google Scholar 

  41. G.P. Lee, Y. Shi, E. Lavoie, T. Daeneke, P. Reineck, U.B. Cappel, D.M. Huang, and U. Bach: Light-driven transformation processes of anisotropic silver nanoparticles. ACS Nano 7, 5911 (2013).

    Article  CAS  Google Scholar 

  42. V. Myroshnychenko, N. Nishio, F.J.G. Abajo, J. Förstner, and N. Yamamoto: Unveiling and imaging degenerate states in plasmonic nanoparticles with nanometer resolution. ACS Nano 12, 8436 (2018).

    Article  CAS  Google Scholar 

  43. K. Tanabe: Field enhancement around metal nanoparticles and nanoshells: A systematic investigation. J. Phys. Chem. C 112, 15721 (2008).

    Article  CAS  Google Scholar 

  44. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P.V. Braun, R. Bhargava, and J.A. Rogers: Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. Nat. Commun. 2, 479 (2011).

    Article  CAS  Google Scholar 

  45. J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue: Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency. Opt. Express 20, 14871 (2012).

    Article  Google Scholar 

  46. M. Bahramipanah, M.S. Abrishamian, S.A. Mirtaheri, and J.M. Liu: Ultracompact plasmonic loop–stub notch filter and sensor. Sens. Actuators, B 194, 311 (2014).

    Article  CAS  Google Scholar 

  47. F. Yi, E. Shim, A.Y. Zhu, H. Zhu, J.C. Reed, and E. Cubukcu: Electrically tunable plasmonic absorber enabled by indium tin oxide. In CLEO: 2013, Vol. 1 (IEEE, San Jose, CA, 2013); pp. 1–2.

    Google Scholar 

  48. X. Chen, Y. Shi, F. Lou, Y. Chen, M. Yan, L. Wosinski, and M. Qiu: Photothermally tunable silicon-microring-based optical add-drop filter through integrated light absorber. Opt. Express 22, 25233 (2014).

    Article  CAS  Google Scholar 

  49. M. Maillard, P. Huang, and L. Brus: Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Lett. 3, 1611 (2003).

    Article  CAS  Google Scholar 

  50. E.D. Palik: Handbook of Optical Constants of Solids, 1st ed. (Academic Press, Newton, Massachusetts, 1985).

    Google Scholar 

Download references

Acknowledgments

A.W., R.S., and M.S. acknowledge support from grant SB/S3/EECE/095/2014 from Science and Engineering Research Board (SERB). A.S. and R.S. acknowledge support from the Council for Scientific and Industrial Research (CSIR). A.R. and R.S.D. acknowledge support from the Ministry of Human Resource & Development. G.E.J. acknowledges support from NSERC. S.K. and M.S. acknowledge support from grant TMD/CERI/BEE/2016/035(G) from Department of Science & Technology (DST). M.S. acknowledges support under the Young Faculty Research Fellowship (YFRF) from Digital India Corporation. The authors acknowledge the use of the Nanoscale Research Facility (NRF), the Central Research Facility (CRF), and the Department of Chemical Engineering (DLS measurements) at IIT Delhi. A.W., R.S.D., R.S., and M.S. declare competing interest in the form of a related provisional Indian patent application (201811015696). A.W. would like to acknowledge assistance from Mr. Aakash Jain in formatting some of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhusudan Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walia, A., Kumar, S., Ramachandran, A. et al. Multigeneration solution-processed method for silver nanotriangles exhibiting narrow linewidth (170 nm) absorption in near-infrared. Journal of Materials Research 34, 3420–3427 (2019). https://doi.org/10.1557/jmr.2019.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.252

Navigation