Skip to main content
Log in

The structure and thermochemistry of K2CO3–MgCO3 glass

  • Invited Paper
  • Thermodynamics of Complex Solids
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbonate glasses can be formed routinely in the system K2CO3–MgCO3. The enthalpy of formation for one such 0.55K2CO3–0.45MgCO3 glass was determined at 298 K to be 115.00 ± 1.21 kJ/mol by drop solution calorimetry in molten sodium molybdate (3Na2O·MoO3) at 975 K. The corresponding heat of formation from oxides at 298 K was −261.12 ± 3.02 kJ/mol. This ternary glass is shown to be slightly metastable with respect to binary crystalline components (K2CO3 and MgCO3) and may be further stabilized by entropy terms arising from cation disorder and carbonate group distortions. This high degree of disorder is confirmed by 13C MAS NMR measurement of the average chemical shift tensor values, which show asymmetry of the carbonate anion to be significantly larger than previously reported values. Molecular dynamics simulations show that the structure of this carbonate glass reflects the strong interaction between the oxygen atoms in distorted carbonate anions and potassium cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. C.A. Angell: Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  2. M.C. Wilding, M. Wilson, O.L.G. Alderman, C. Benmore, J.K.R. Weber, J.B. Parise, A. Tamalonis, and L. Skinner: Low-dimensional network formation in molten sodium carbonate. Sci. Rep. 6, 1–7 (2016).

    Article  CAS  Google Scholar 

  3. M.C. Wilding, M. Wilson, M.C.C. Ribeiro, C.J. Benmore, J.K.R. Weber, O.L.G. Alderman, A. Tamalonis, and J.B. Parise: The structure of liquid alkali nitrates and nitrites. Phys. Chem. Chem. Phys. 19, 21625–21638 (2017).

    Article  CAS  Google Scholar 

  4. M. Wilson, M.C.C. Ribeiro, M.C. Wilding, C. Benmore, J.K.R. Weber, O. Alderman, A. Tamalonis, and J.B. Parise: Structure and liquid fragility in sodium carbonate. J. Phys. Chem. A 122, 1071–1076 (2018).

    Article  CAS  Google Scholar 

  5. M.J. Genge, A.P. Jones, and G.D. Price: An infrared and Raman study of carbonate glasses-implications for carbonatite magmas. Geochim. Cosmochim. Acta 59, 927–937 (1995).

    Article  CAS  Google Scholar 

  6. S. Sen, D.C. Kaseman, B. Colas, D.E. Jacob, and S.M. Clark: Hydrogen bonding induced distortion of CO3 units and kinetic stabilization of amorphous calcium carbonate: Results from 2D C-13 NMR spectroscopy. Phys. Chem. Chem. Phys. 18, 20330–20337 (2016).

    Article  CAS  Google Scholar 

  7. W. Eitel and W. Skaliks: Double carbonates of alkalis and alkaline earths. Z. Anorg. Allg. Chem. 183, 263–286 (1929).

    Article  CAS  Google Scholar 

  8. M.J. Genge, A.P. Jones, and G.D. Price: An infrared and Raman study of carbonate glasses-implications for the structure of carbonatite magmas. Geochim. Cosmochim. Acta 59, 927–937 (1995).

    Article  CAS  Google Scholar 

  9. M.J. Genge, G.D. Price, and A.P. Jones: Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures—Implications for carbonatite magmas. Earth Planet. Sci. Lett. 131, 225–238 (1995).

    Article  CAS  Google Scholar 

  10. D.P. Dobson, A.P. Jones, R. Rabe, T. Sekine, K. Kurita, T. Taniguchi, T. Kondo, T. Kato, O. Shimomura, and S. Urakawa: In situ measurement of viscosity and density of carbonate melts at high pressure. Earth Planet. Sci. Lett. 143, 207–215 (1996).

    Article  CAS  Google Scholar 

  11. S.E. Ragone, R.K. Datta, D.M. Roy, and O.F. Tuttle: The system potassium carbonate-magnesium carbonate. J. Phys. Chem. 70, 3360–3361 (1966).

    Article  CAS  Google Scholar 

  12. R.K. Datta, D.M. Roy, S.P. Faile, and O.F. Tuttle: Glass formation in carbonate systems. J. Am. Ceram. Soc. 47, 153 (1964).

    Article  CAS  Google Scholar 

  13. T. Forland and W.A. Weyl: formation of a sulfate glass. J. Am. Ceram. Soc. 33, 186–187 (1950).

    Article  CAS  Google Scholar 

  14. D.R. MacFarlane: Attempted glass formation in pure KHSO4. J. Am. Ceram. Soc. 67, C–28 (1984).

    Article  Google Scholar 

  15. L.G. van Uitert and W.H. Grodkiewicz: Nitrate glasses. Mater. Res. Bull. 6, 283–292 (1971).

    Article  Google Scholar 

  16. A.P. Jones, M. Genge, and L. Carmody: Carbonate melts and carbonatites. In Carbon in Earth, R.M. Hazen, A.P. Jones, and J.A. Baross, eds. (The Mineralogical Society of America, Chantilly, Virginia, 2013); pp. 289–322.

    Chapter  Google Scholar 

  17. S.K. Sharma and B. Simons: Raman study of K2CO3–MgCO3 glasses. In Carnegie Institute of Washington Yearbook, Vol. 79, H.S. Yoder, ed. (The Carnegie Institution of Washington, Washington DC, 1980); pp. 322–326.

    Google Scholar 

  18. A. Navrotsky: Progress and new directions in calorimetry: A 2014 perspective. J. Am. Ceram. Soc. 97, 3349–3359 (2014).

    Article  CAS  Google Scholar 

  19. S.K. Sahu, L.A. Boatner, and A. Navrotsky: Formation and dehydration enthalpy of potassium hexaniobate. J. Am. Ceram. Soc. 100, 304–311 (2017).

    Article  CAS  Google Scholar 

  20. R. Shivaramaiah and A. Navrotsky: Energetics of order-disorder in layered magnesium aluminum double hydroxides with inter layer carbonate. Inorg. Chem. 54, 3253–3259 (2015).

    Article  CAS  Google Scholar 

  21. L.A. Chai and A. Navrotsky: Thermochemistry of carbonate-pyroxene equilibria. Contrib. Mineral. Petrol. 114, 139–147 (1993).

    Article  CAS  Google Scholar 

  22. I. Kiseleva, A. Navrotsky, I.A. Belitsky, and B.A. Fursenko: Thermochemistry of natural potassium sodium calcium leonhardite and its cation-exchanged forms. Am. Mineral. 81, 668–675 (1996).

    Article  CAS  Google Scholar 

  23. A. Navrotsky, R.L. Putnam, C. Winbo, and E. Rosen: Thermochemistry of double carbonates in the K2CO3–CaCO3 system. Am. Mineral. 82, 546–548 (1997).

    Article  CAS  Google Scholar 

  24. I. Tarina, A. Navrotsky, and H. Gan: Direct calorimetric measurment of enthalpics in diopside-anorthite-wollastonaite melts at 1773 K. Geochim. Cosmochim. Acta 58, 3665–3673 (1994).

    Article  CAS  Google Scholar 

  25. A. Navrotsky, P. Maniar, and R. Oestrike: Energetics of glasses in the system diopside-anorthite-forsterite. Contrib. Mineral. Petrol. 105, 81–86 (1990).

    Article  CAS  Google Scholar 

  26. R. Hon, D.F. Weill, R.B. Kasper, and A. Navrotsky: Enthalpies of mixing of glasses in the system albite-anorthite-diopside. Trans., Am. Geophys. Union 58, 1243 (1977).

    Google Scholar 

  27. A. Golubkova, M. Merlini, and M.W. Schmidt: Crystal structure, high-pressure, and high-temperature behavior of carbonates in the K2Mg(CO3)2–Na2Mg(CO3)2 join. Am. Mineral. 100, 2458–2467 (2015).

    Article  Google Scholar 

  28. A. Shatskiy, K.D. Litasov, Y.N. Palyanov, and E. Ohtani: Phase relations on the K2CO3–CaCO3–MgCO3 join at 6 GPa and 900–1400 °C: Implications for incipient melting in carbonated mantle domains. Am. Mineral. 101, 437–447 (2016).

    Article  Google Scholar 

  29. A. Shatskiy, Y.M. Borzdov, K.D. Litasov, I.S. Sharygin, Y.N. Palyanov, and E. Ohtani: Phase relationships in the system K2CO3–CaCO3 at 6 GPa and 900–1450 °C. Am. Mineral. 100, 223–232 (2015).

    Article  Google Scholar 

  30. A. Shatskiy, I.S. Sharygin, P.N. Gavryushkin, K.D. Litasov, Y.M. Borzdov, A.V. Shcherbakova, Y. Higo, K-i. Funakoshi, Y.N. Palyanov, and E. Ohtani: The system K2CO3–MgCO3 at 6 GPa and 900–1450 °C. Am. Mineral. 98, 1593–1603 (2013).

    Article  CAS  Google Scholar 

  31. A.I. Alekseev, L.D. Barinova, N.P. Rogacheva, and O.V. Kulinich: Thermodynamic values of binary carbonate salts K2CO3·MgCO3·nH2O. J. Appl. Chem. USSR 57, 1168–1172 (1984).

    Google Scholar 

  32. H.W. Papenguth, R.J. Kirkpatrick, B. Montez, and P.A. Sandberg: C-13 MAS NMR-spectroscopy of inorganic and biogenic carbonates. Am. Mineral. 74, 1152–1158 (1989).

    CAS  Google Scholar 

  33. F. Marc Michel, J. MacDonald, J. Feng, B.L. Phillips, L. Ehm, C. Tarabrella, J.B. Parise, R.J. Reeder: Structural characteristics of synthetic amorphous calcium carbonate. Chem. Mater. 20, 4720–4728 (2008).

    Article  CAS  Google Scholar 

  34. F.M. Michel, J. McDonald, J. Feng, B.L. Phillips, L. Ehm, C. Tarabrella, J.B. Parise, and R.J. Reeder: Structural characteristics of synthetic amorphous calcium carbonate. Geochim. Cosmochim. Acta 72, A626 (2008).

    Article  CAS  Google Scholar 

  35. T.F. Sevelsted, D. Herfort, and J. Skibsted: C-13 chemical shift anisotropies for carbonate ions in cement minerals and the use of C-13, Al-27 and Si-29 MAS NMR in studies of Portland cement including limestone additions. Cem. Concr. Res. 52, 100–111 (2013).

    Article  CAS  Google Scholar 

  36. J.K. Moore, J.A. Surface, A. Brenner, L.S. Wang, P. Skemer, M.S. Conradi, and S.E. Hayes: Quantitative identification of metastable magnesium carbonate minerals by solid-state C-13 NMR spectroscopy (vol 49, pg 657, 2015). Environ. Sci. Technol. 49, 1986 (2015).

    Article  CAS  Google Scholar 

  37. H. Nebel, M. Neumann, C. Mayer, and M. Epple: On the structure of amorphous calcium carbonate—A detailed study by solid-state NMR spectroscopy. Inorg. Chem. 47, 7874–7879 (2008).

    Article  CAS  Google Scholar 

  38. S.C. Kohn, R.A. Brooker, and R. Dupree: C-13 MAS NMR—A method for studying CO2 speciation in glasses. Geochim. Cosmochim. Acta 55, 3879–3884 (1991).

    Article  CAS  Google Scholar 

  39. R.A. Brooker, S.C. Kohn, J.R. Holloway, P.F. McMillan, and M.R. Carroll: Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2–SiO2 join. Geochim. Cosmochim. Acta 63, 3549–3565 (1999).

    Article  CAS  Google Scholar 

  40. Z.W. Su and P. Coppens: Relativistic X-ray elastic scattering factors for neutral atoms Z = 1–54 from multiconfiguration Dirac–Fock wavefunctions in the 0–12 Å−1 sin θ/λ range, and six-Gaussian analytical expressions in the 0–6 Å−1 range (vol A53, pg 749, 1997). Acta Crystallogr., Sect. A: Found. Crystallogr. 54, 357 (1998).

    Article  Google Scholar 

  41. K.F. Hesse and B. Simons: Crystal structure of synthetic K2Mg(CO3)2. Z. Kristallogr. 161, 289–292 (1982).

    Article  CAS  Google Scholar 

  42. P.D. Ihinger: An experimental study of the interaction of water with granitic melt. Ph.D. thesis, California Institute of Technology, Pasedena, California, 1991.

    Google Scholar 

  43. A. Navrotsky: High temperature reaction calorimetry applied to metastable and nanophase materials. J. Therm. Anal. Calorim. 57, 653–658 (1999).

    Article  CAS  Google Scholar 

  44. A. Navrotsky: High-temperature oxide melt calorimetry of oxides and nitrides. J. Chem. Thermodyn. 33, 859–871 (2001).

    Article  CAS  Google Scholar 

  45. J. Herzfeld and A.E. Berger: Sideband intensities in NMR-spectra of samples spinning at the magic angle. J. Chem. Phys. 73, 6021–6030 (1980).

    Article  CAS  Google Scholar 

  46. K. Eichele: HBA. Ph.D. thesis, Universitaet Tuebingen, Tuebingen, Germany, 2015.

    Google Scholar 

  47. J. Tissen, G.J.M. Janssen, and J.P. Vandereerden: Molecular dynamics simulation fo binary mixtures of molten alkali carboantes. Mol. Phys. 82, 101–111 (1994).

    Article  CAS  Google Scholar 

  48. M.F. Costa and M.C.C. Ribeiro: Molecular dynamics of molten Li2CO3–K2CO3 (vol 138, pg 61, 2008). J. Mol. Liq. 142, 161 (2008).

    Article  CAS  Google Scholar 

  49. M.C.C. Ribeiro: First sharp diffraction peak in the fragile liquid Ca0.4K0.6(NO3)1.4. Phys. Rev. B 61, 3297–3302 (2000).

    Article  CAS  Google Scholar 

  50. M.C.C. Ribeiro: Ionic dynamics in the glass-forming liquid Ca0.4K0.6(NO3)1.4: A molecular dynamics study with a polarizable model. Phys. Rev. B 63, 0942051–09420510 (2001).

    Google Scholar 

  51. M.C.C. Ribeiro: Molecular dynamics study on the glass transition in Ca0.4K0.6(NO3)1.4. J. Phys. Chem. B 107, 9520–9527 (2003).

    Article  CAS  Google Scholar 

  52. D.T. Cromer and J.B. Mann: X-ray scattering functions compuited from numerical Hartree–Fock functions. Acta Crystallogr. A 24, 321–324 (1968).

    Article  CAS  Google Scholar 

  53. G. Shen, V.B. Prakapenka, M.L. Rivers, and S.R. Sutton: Structural investigation of amorphous materials at high pressures using the diamond anvil cell. Rev. Sci. Instrum. 74, 3021–3026 (2003).

    Article  CAS  Google Scholar 

  54. Y. Kono, C. Kenney-Benson, D. Hummer, H. Ohfuji, C. Park, G. Shen, Y. Wang, A. Kavner, and C.E. Manning: Ultralow viscosity of carbonate melts at high pressures. Nat. Commun. 5, 5:5091–5 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

M.C.W. and P.A.B. would like to acknowledge the funding support from the EPSRC under grant EP/R036225/1. M.W. is grateful for the support from the EPSRC Centre for Doctoral Training, Theory and Modeling in Chemical Sciences, under grant EP/L015722/1. R.A.B. was funded by the NERC Thematic Grant consortium NE/M000419/1. The diffraction study was performed at HPCAT (Sector 16) of the Advanced Photon Source (APS). The Advanced Photon Source is a US DOE Office of Science User facility, operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357. Calorimetry at UC Davis was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under Award DE-FG02ER1474.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin C. Wilding.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilding, M.C., Phillips, B.L., Wilson, M. et al. The structure and thermochemistry of K2CO3–MgCO3 glass. Journal of Materials Research 34, 3377–3388 (2019). https://doi.org/10.1557/jmr.2019.250

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.250

Navigation