Abstract
Three-dimensional nano-mulberries consisting of SnO2 nanoparticles have been successfully anchored onto the surfaces of reduced graphene oxide (RGO) to construct hierarchical hybrids—SnO2@RGO with a one-pot approach. The SnO2 nano-mulberries with different amounts of RGO have been produced for optimizing their composition effect on Li storage performance. Specifically, SnO2@RGO hybrids incorporated with optimized amount of RGO nanosheets (∼20.8%) exhibit highly enhanced capacity of ∼1025 mA h/g at 0.1 A/g and a reversible capacity of 750 mA h/g over 100 cycles at 0.2 A/g. The materials also deliver much better rate performance with average specific capacity of ∼498 mA h/g at 2 A/g in comparison with that of SnO2 nano-mulberries. After cycling for 600 times at 1 A/g, the SnO2@RGO electrodes still maintain high reversible capacity of ∼602 mA h/g, corresponding to 35% of the second cycle and 133% of the 70th discharge capacity.
Similar content being viewed by others
References
Y. Lu, Y. Yu, and X.W. Lou: Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4, 972 (2018).
R. Raccichini, A. Varzi, D. Wei, and S. Passerini: Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv. Mater. 29, 1603421 (2017).
Y. Yang, X. Zhao, H.E. Wang, M.L. Li, C. Hao, M. Ji, S.Z. Ren, and G.Z. Cao: Phosphorized SnO2/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance. J. Mater. Chem. A 6, 3479 (2018).
X.W. Lou, J.S. Chen, P. Chen, and L.A. Archer: One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem. Mater. 21, 2868 (2009).
L. Sun, H.C. Si, Y.X. Zhang, Y. Shi, K. Wang, J.G. Liu, and Y.H. Zhang: Sn–SnO2 hybrid nanoclusters embedded in carbon nanotubes with enhanced electrochemical performance for advanced lithium ion batteries. J. Power Sources 415, 126 (2019).
Y. Zhao, C. Wei, S.N. Sun, L.P. Wang, and Z.C.J. Xu: Reserving interior void space for volume change accommodation: An example of cable-like MWNTs@SnO2@C composite for superior lithium and sodium storage. Adv. Sci. 2, 8 (2015).
L.P. Wang, Y. Leconte, Z. Feng, C. Wei, Y. Zhao, Q. Ma, W. Xu, S. Bourrioux, P. Azais, M. Srinivasan, and Z.J. Xu: Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: Demonstration of exceptional lithium storage properties. Adv. Mater. 29, 1603286 (2017).
P.A. Connor and J.T.S. Irvine: Novel tin oxide spinel-based anodes for Li-ion batteries. J. Power Sources 97, 223 (2001).
Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka: Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395 (1997).
K. Mishra, X.C. Liu, M. Geppert, J.J. Wu, J.T. Li, L. Huang, S.G. Sun, X.D. Zhou, and F.S. Ke: Submicro-sized Si–Ge solid solutions with high capacity and long cyclability for lithium-ion batteries. J. Mater. Res. 33, 1553 (2018).
F. Gong, L. Peng, H. Liu, Y. Zhang, D. Jia, S. Fang, F. Li, and D. Li: 3D core–shell MoS2 superspheres composed of oriented nanosheets with quasi molecular superlattices: Mimicked embryo formation and Li-storage properties. J. Mater. Chem. A 6, 18498 (2018).
F. Gong, S. Lu, L. Peng, J. Zhou, J. Kong, D. Jia, and F. Li: Hierarchical Mn2O3 microspheres in situ coated with carbon for supercapacitors with highly enhanced performances. Nanomaterials 7, 409 (2017).
R. Retoux, T. Brousse, and D.M. Schleich: High-resolution electron microscopy investigation of capacity fade in SnO2 electrodes for lithium-ion batteries. J. Electrochem. Soc. 146, 2472 (1999).
R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, and M. Zhu: Stabilizing the nanostructure of SnO2 anodes by transition metals: A route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 29, 1605006 (2017).
B.B. Jiang, Y.J. He, B. Li, S.Q. Zhao, S. Wang, Y.B. He, and Z.Q. Lin: Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: Anodes for cyclable lithium-ion batteries. Angew. Chem., Int. Ed. 56, 1869 (2017).
H.G. Wang, Q. Wu, Y.H. Wang, X. Wang, L.L. Wu, S.Y. Song, and H.J. Zhang: Molecular engineering of monodisperse SnO2 nanocrystals anchored on doped graphene with high-performance lithium/sodium-storage properties in half/full cells. Adv. Energy Mater. 9, 10 (2019).
J.Y. Cheong, C. Kim, J.W. Jung, T.G. Yun, D.Y. Youn, S.H. Cho, K.R. Yoon, H.Y. Jang, S.W. Song, and I.D. Kim: Incorporation of amorphous TiO2 into one-dimensional SnO2 nanostructures as superior anodes for lithium-ion batteries. J. Power Sources 400, 485 (2018).
M. Liu, S. Zhang, H. Dong, X. Chen, S. Gao, Y. Sun, W. Li, J. Xu, L. Chen, A. Yuan, and W. Lu: Nano-SnO2/carbon nanotube hairball composite as a high-capacity anode material for lithium ion batteries. ACS Sustainable Chem. Eng. 7, 4195 (2019).
J. Abe, K. Takahashi, K. Kawase, Y. Kobayashi, and S. Shiratori: Self-standing carbon nanofiber and SnO2 nanorod composite as a high-capacity and high-rate-capability anode for lithium-ion batteries. ACS Appl. Nano Mater. 1, 2982 (2018).
X. Wang, X.Q. Cao, L. Bourgeois, H. Guan, S.M. Chen, Y.T. Zhong, D.M. Tang, H.Q. Li, T.Y. Zhai, L. Li, Y. Bando, and D. Golberg: N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv. Funct. Mater. 22, 2682 (2012).
L. Zhang, G.Q. Zhang, H.B. Wu, L. Yu, and X.W. Lou: Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv. Mater. 25, 2589 (2013).
W.Q. Yao, S.B. Wu, L. Zhan, and Y.L. Wang: Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries. Chem. Eng. J. 361, 329 (2019).
L. Zhang, H.B. Wu, Y. Yan, X. Wang, and X.W. Lou: Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ. Sci. 7, 3302 (2014).
X. Min, B. Sun, S. Chen, M.H. Fang, X.W. Wu, Y.G. Liu, A. Abdelkader, Z.H. Huang, T. Liu, K. Xi, and R.V. Kumar: A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 16, 597 (2019).
Q.S. Wang, J.Q. Xu, G.Y. Shen, Y.Q. Guo, X. Zhao, Y.J. Xia, H.B. Sun, P.Y. Hou, W.H. Xie, and X.J. Xu: Large-scale carbon framework microbelts anchoring ultrafine SnO2 nanoparticles with enhanced lithium storage properties. Electrochim. Acta 297, 879 (2019).
J. Lin, Z.W. Peng, C.S. Xiang, G.D. Ruan, Z. Yan, D. Natelson, and J.M. Tour: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7, 6001 (2013).
B. Huang, X.H. Li, Y. Pei, S. Li, X. Cao, R.C. Masse, and G.Z. Cao: Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small 12, 1945 (2016).
H.K. Wang and A.L. Rogach: Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater. 26, 123 (2014).
X. Zhao, M. Luo, W.X. Zhao, R.M. Xu, Y. Liu, and H. Shen: SnO2 nanosheets anchored on a 3D bicontinuous electron and ion transport carbon network for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 38006 (2018).
L. Yue, J.J. Ge, G.X. Luo, K.T. Bian, C. Yin, R.F. Guan, W.H. Zhang, Z. Zhou, K.X. Wang, and X.F. Guo: A facile large-scale synthesis of porous SnO2 by bronze for superior lithium storage and gas sensing properties through a wet chemical reaction strategy. J. Electron. Mater. 47, 2545 (2018).
X.J. Hu, G. Wang, B.B. Wang, X.J. Liu, and H. Wang: Co3Sn2/SnO2 heterostructures building double shell micro-cubes wrapped in three-dimensional graphene matrix as promising anode materials for lithium-ion and sodium-ion batteries. Chem. Eng. J. 355, 986 (2019).
X.W. Lou, C.M. Li, and L.A. Archer: Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 21, 2536 (2009).
P.Y. Chang and R.A. Doong: Microwave-assisted synthesis of SnO2/mesoporous carbon core-satellite microspheres as anode material for high-rate lithium ion batteries. J. Alloys Compd. 775, 214 (2019).
P. Deng, J. Yang, S.Y. Li, T.E. Fan, H.H. Wu, Y. Mou, H. Huang, Q.B. Zhang, D.L. Peng, and B.H. Qu: High initial reversible capacity and long life of ternary SnO2–Co-carbon nanocomposite anodes for lithium-ion batteries. Nano-Micro Lett. 11, 13 (2019).
X. Zhou, L.J. Wan, and Y.G. Guo: Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25, 2152 (2013).
Y-X. Wang, Y-G. Lim, M-S. Park, S-L. Chou, J.H. Kim, H-K. Liu, S-X. Dou, and Y-J. Kim: Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A 2, 529 (2014).
X.Q. Xie, D.W. Su, J.Q. Zhang, S.Q. Chen, A.K. Mondal, and G.X. Wang: A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries. Nanoscale 7, 3164 (2015).
Y.F. Deng, C.C. Fang, and G.H. Chen: The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. J. Power Sources 304, 81 (2016).
J.S. Chen and X.W. Lou: SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 9, 1877 (2013).
S. Zuo, D. Li, Z. Wu, Y. Sun, Q. Lu, F. Wang, R. Zhuo, D. Yan, J. Wang, and P. Yan: SnO2/graphene oxide composite material with high rate performance applied in lithium storage capacity. Electrochim. Acta 264, 61 (2018).
Y. Li, Q. Meng, J. Ma, C. Zhu, J. Cui, Z. Chen, Z. Guo, T. Zhang, S. Zhu, and D. Zhang: Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries. ACS Appl. Mater. Interfaces 7, 11146 (2015).
D.Y. Song, S.S. Wang, R.Z. Liu, J.L. Jiang, Y. Jiang, S.S. Huang, W.R. Li, Z.W. Chen, and B. Zhao: Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material. Appl. Surf. Sci. 478, 290 (2019).
Y. Xiao, S. Liu, F. Li, A. Zhang, J. Zhao, S. Fang, and D. Jia: 3D hierarchical Co3O4 twin-spheres with an urchin-like structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv. Funct. Mater. 22, 4052 (2012).
H. Chen, S. Lu, F. Gong, H. Liu, and F. Li: Stepwise splitting growth and pseudocapacitive properties of hierarchical three-dimensional Co3O4 nanobooks. Nanomater 7, 81 (2017).
E. Meng, M. Zhang, Y. Hu, F. Gong, L. Zhang, and F. Li: Solid-state attachments of Ag nanoparticles onto the surfaces of LiFePO4 cathode materials for Li storage with enhanced capabilities. Electrochim. Acta 265, 160 (2018).
S.H. Sun, G.W. Meng, G.X. Zhang, T. Gao, B.Y. Geng, L.D. Zhang, and J. Zuo: Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders. Chem. Phys. Lett. 376, 103 (2003).
Y. Liu and M. Liu: Growth of aligned square-shaped SnO2 tube arrays. Adv. Funct. Mater. 15, 57 (2005).
L. Noerochim, J-Z. Wang, S-L. Chou, H-J. Li, and H-K. Liu: SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries. Electrochim. Acta 56, 314 (2010).
J. Liang, X-Y. Yu, H. Zhou, H.B. Wu, S. Ding, and X.W. Lou: Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 53, 12803 (2014).
S. Li, W. Xie, S. Wang, X. Jiang, S. Peng, and D. He: Facile synthesis of rGO/SnO2 composite anodes for lithium ion batteries. J. Mater. Chem. A 2, 17139 (2014).
X. Li, L. Qiao, D. Li, X. Wang, W. Xie, and D. He: Three-dimensional network structured alpha-Fe2O3 made from a stainless steel plate as a high-performance electrode for lithium ion batteries. J. Mater. Chem. A 1, 6400 (2013).
Q. Zhang, Q.M. Gao, W.W. Qian, H. Zhang, Y.L. Tan, W.Q. Tian, Z.Y. Li, and H. Xiao: Graphene-based carbon coated tin oxide as a lithium ion battery anode material with high performance. J. Mater. Chem. A 5, 19136 (2017).
W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).
Acknowledgments
This work was financially supported by Doctoral Foundation of Zhengzhou University of Light Industry (No. 2018BSJJ027), Key Program of Henan Province for Science and Technology (192102210018), and National Natural Science Foundation of China (Nos. 21071130 and 21371157).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gong, F., Liu, M., Gong, L. et al. SnO2 nano-mulberries anchored onto RGO nanosheets for lithium ion batteries. Journal of Materials Research 35, 20–30 (2020). https://doi.org/10.1557/jmr.2019.247
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2019.247