Skip to main content
Log in

SnO2 nano-mulberries anchored onto RGO nanosheets for lithium ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Three-dimensional nano-mulberries consisting of SnO2 nanoparticles have been successfully anchored onto the surfaces of reduced graphene oxide (RGO) to construct hierarchical hybrids—SnO2@RGO with a one-pot approach. The SnO2 nano-mulberries with different amounts of RGO have been produced for optimizing their composition effect on Li storage performance. Specifically, SnO2@RGO hybrids incorporated with optimized amount of RGO nanosheets (∼20.8%) exhibit highly enhanced capacity of ∼1025 mA h/g at 0.1 A/g and a reversible capacity of 750 mA h/g over 100 cycles at 0.2 A/g. The materials also deliver much better rate performance with average specific capacity of ∼498 mA h/g at 2 A/g in comparison with that of SnO2 nano-mulberries. After cycling for 600 times at 1 A/g, the SnO2@RGO electrodes still maintain high reversible capacity of ∼602 mA h/g, corresponding to 35% of the second cycle and 133% of the 70th discharge capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Y. Lu, Y. Yu, and X.W. Lou: Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4, 972 (2018).

    Article  CAS  Google Scholar 

  2. R. Raccichini, A. Varzi, D. Wei, and S. Passerini: Critical insight into the relentless progression toward graphene and graphene-containing materials for lithium-ion battery anodes. Adv. Mater. 29, 1603421 (2017).

    Article  CAS  Google Scholar 

  3. Y. Yang, X. Zhao, H.E. Wang, M.L. Li, C. Hao, M. Ji, S.Z. Ren, and G.Z. Cao: Phosphorized SnO2/graphene heterostructures for highly reversible lithium-ion storage with enhanced pseudocapacitance. J. Mater. Chem. A 6, 3479 (2018).

    Article  CAS  Google Scholar 

  4. X.W. Lou, J.S. Chen, P. Chen, and L.A. Archer: One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chem. Mater. 21, 2868 (2009).

    Article  CAS  Google Scholar 

  5. L. Sun, H.C. Si, Y.X. Zhang, Y. Shi, K. Wang, J.G. Liu, and Y.H. Zhang: Sn–SnO2 hybrid nanoclusters embedded in carbon nanotubes with enhanced electrochemical performance for advanced lithium ion batteries. J. Power Sources 415, 126 (2019).

    Article  CAS  Google Scholar 

  6. Y. Zhao, C. Wei, S.N. Sun, L.P. Wang, and Z.C.J. Xu: Reserving interior void space for volume change accommodation: An example of cable-like MWNTs@SnO2@C composite for superior lithium and sodium storage. Adv. Sci. 2, 8 (2015).

    Google Scholar 

  7. L.P. Wang, Y. Leconte, Z. Feng, C. Wei, Y. Zhao, Q. Ma, W. Xu, S. Bourrioux, P. Azais, M. Srinivasan, and Z.J. Xu: Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: Demonstration of exceptional lithium storage properties. Adv. Mater. 29, 1603286 (2017).

    Article  CAS  Google Scholar 

  8. P.A. Connor and J.T.S. Irvine: Novel tin oxide spinel-based anodes for Li-ion batteries. J. Power Sources 97, 223 (2001).

    Article  Google Scholar 

  9. Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, and T. Miyasaka: Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395 (1997).

    Article  CAS  Google Scholar 

  10. K. Mishra, X.C. Liu, M. Geppert, J.J. Wu, J.T. Li, L. Huang, S.G. Sun, X.D. Zhou, and F.S. Ke: Submicro-sized Si–Ge solid solutions with high capacity and long cyclability for lithium-ion batteries. J. Mater. Res. 33, 1553 (2018).

    Article  CAS  Google Scholar 

  11. F. Gong, L. Peng, H. Liu, Y. Zhang, D. Jia, S. Fang, F. Li, and D. Li: 3D core–shell MoS2 superspheres composed of oriented nanosheets with quasi molecular superlattices: Mimicked embryo formation and Li-storage properties. J. Mater. Chem. A 6, 18498 (2018).

    Article  CAS  Google Scholar 

  12. F. Gong, S. Lu, L. Peng, J. Zhou, J. Kong, D. Jia, and F. Li: Hierarchical Mn2O3 microspheres in situ coated with carbon for supercapacitors with highly enhanced performances. Nanomaterials 7, 409 (2017).

    Article  CAS  Google Scholar 

  13. R. Retoux, T. Brousse, and D.M. Schleich: High-resolution electron microscopy investigation of capacity fade in SnO2 electrodes for lithium-ion batteries. J. Electrochem. Soc. 146, 2472 (1999).

    Article  CAS  Google Scholar 

  14. R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, and M. Zhu: Stabilizing the nanostructure of SnO2 anodes by transition metals: A route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 29, 1605006 (2017).

    Article  CAS  Google Scholar 

  15. B.B. Jiang, Y.J. He, B. Li, S.Q. Zhao, S. Wang, Y.B. He, and Z.Q. Lin: Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: Anodes for cyclable lithium-ion batteries. Angew. Chem., Int. Ed. 56, 1869 (2017).

    Article  CAS  Google Scholar 

  16. H.G. Wang, Q. Wu, Y.H. Wang, X. Wang, L.L. Wu, S.Y. Song, and H.J. Zhang: Molecular engineering of monodisperse SnO2 nanocrystals anchored on doped graphene with high-performance lithium/sodium-storage properties in half/full cells. Adv. Energy Mater. 9, 10 (2019).

    CAS  Google Scholar 

  17. J.Y. Cheong, C. Kim, J.W. Jung, T.G. Yun, D.Y. Youn, S.H. Cho, K.R. Yoon, H.Y. Jang, S.W. Song, and I.D. Kim: Incorporation of amorphous TiO2 into one-dimensional SnO2 nanostructures as superior anodes for lithium-ion batteries. J. Power Sources 400, 485 (2018).

    Article  CAS  Google Scholar 

  18. M. Liu, S. Zhang, H. Dong, X. Chen, S. Gao, Y. Sun, W. Li, J. Xu, L. Chen, A. Yuan, and W. Lu: Nano-SnO2/carbon nanotube hairball composite as a high-capacity anode material for lithium ion batteries. ACS Sustainable Chem. Eng. 7, 4195 (2019).

    Article  CAS  Google Scholar 

  19. J. Abe, K. Takahashi, K. Kawase, Y. Kobayashi, and S. Shiratori: Self-standing carbon nanofiber and SnO2 nanorod composite as a high-capacity and high-rate-capability anode for lithium-ion batteries. ACS Appl. Nano Mater. 1, 2982 (2018).

    Article  CAS  Google Scholar 

  20. X. Wang, X.Q. Cao, L. Bourgeois, H. Guan, S.M. Chen, Y.T. Zhong, D.M. Tang, H.Q. Li, T.Y. Zhai, L. Li, Y. Bando, and D. Golberg: N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv. Funct. Mater. 22, 2682 (2012).

    Article  CAS  Google Scholar 

  21. L. Zhang, G.Q. Zhang, H.B. Wu, L. Yu, and X.W. Lou: Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage. Adv. Mater. 25, 2589 (2013).

    Article  CAS  Google Scholar 

  22. W.Q. Yao, S.B. Wu, L. Zhan, and Y.L. Wang: Two-dimensional porous carbon-coated sandwich-like mesoporous SnO2/graphene/mesoporous SnO2 nanosheets towards high-rate and long cycle life lithium-ion batteries. Chem. Eng. J. 361, 329 (2019).

    Article  CAS  Google Scholar 

  23. L. Zhang, H.B. Wu, Y. Yan, X. Wang, and X.W. Lou: Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting. Energy Environ. Sci. 7, 3302 (2014).

    Article  CAS  Google Scholar 

  24. X. Min, B. Sun, S. Chen, M.H. Fang, X.W. Wu, Y.G. Liu, A. Abdelkader, Z.H. Huang, T. Liu, K. Xi, and R.V. Kumar: A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries. Energy Storage Mater. 16, 597 (2019).

    Article  Google Scholar 

  25. Q.S. Wang, J.Q. Xu, G.Y. Shen, Y.Q. Guo, X. Zhao, Y.J. Xia, H.B. Sun, P.Y. Hou, W.H. Xie, and X.J. Xu: Large-scale carbon framework microbelts anchoring ultrafine SnO2 nanoparticles with enhanced lithium storage properties. Electrochim. Acta 297, 879 (2019).

    Article  CAS  Google Scholar 

  26. J. Lin, Z.W. Peng, C.S. Xiang, G.D. Ruan, Z. Yan, D. Natelson, and J.M. Tour: Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 7, 6001 (2013).

    Article  CAS  Google Scholar 

  27. B. Huang, X.H. Li, Y. Pei, S. Li, X. Cao, R.C. Masse, and G.Z. Cao: Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small 12, 1945 (2016).

    Article  CAS  Google Scholar 

  28. H.K. Wang and A.L. Rogach: Hierarchical SnO2 nanostructures: Recent advances in design, synthesis, and applications. Chem. Mater. 26, 123 (2014).

    Article  CAS  Google Scholar 

  29. X. Zhao, M. Luo, W.X. Zhao, R.M. Xu, Y. Liu, and H. Shen: SnO2 nanosheets anchored on a 3D bicontinuous electron and ion transport carbon network for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 10, 38006 (2018).

    Article  CAS  Google Scholar 

  30. L. Yue, J.J. Ge, G.X. Luo, K.T. Bian, C. Yin, R.F. Guan, W.H. Zhang, Z. Zhou, K.X. Wang, and X.F. Guo: A facile large-scale synthesis of porous SnO2 by bronze for superior lithium storage and gas sensing properties through a wet chemical reaction strategy. J. Electron. Mater. 47, 2545 (2018).

    Article  CAS  Google Scholar 

  31. X.J. Hu, G. Wang, B.B. Wang, X.J. Liu, and H. Wang: Co3Sn2/SnO2 heterostructures building double shell micro-cubes wrapped in three-dimensional graphene matrix as promising anode materials for lithium-ion and sodium-ion batteries. Chem. Eng. J. 355, 986 (2019).

    Article  CAS  Google Scholar 

  32. X.W. Lou, C.M. Li, and L.A. Archer: Designed synthesis of coaxial SnO2@carbon hollow nanospheres for highly reversible lithium storage. Adv. Mater. 21, 2536 (2009).

    Article  CAS  Google Scholar 

  33. P.Y. Chang and R.A. Doong: Microwave-assisted synthesis of SnO2/mesoporous carbon core-satellite microspheres as anode material for high-rate lithium ion batteries. J. Alloys Compd. 775, 214 (2019).

    Article  CAS  Google Scholar 

  34. P. Deng, J. Yang, S.Y. Li, T.E. Fan, H.H. Wu, Y. Mou, H. Huang, Q.B. Zhang, D.L. Peng, and B.H. Qu: High initial reversible capacity and long life of ternary SnO2–Co-carbon nanocomposite anodes for lithium-ion batteries. Nano-Micro Lett. 11, 13 (2019).

    Article  CAS  Google Scholar 

  35. X. Zhou, L.J. Wan, and Y.G. Guo: Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25, 2152 (2013).

    Article  CAS  Google Scholar 

  36. Y-X. Wang, Y-G. Lim, M-S. Park, S-L. Chou, J.H. Kim, H-K. Liu, S-X. Dou, and Y-J. Kim: Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J. Mater. Chem. A 2, 529 (2014).

    Article  CAS  Google Scholar 

  37. X.Q. Xie, D.W. Su, J.Q. Zhang, S.Q. Chen, A.K. Mondal, and G.X. Wang: A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries. Nanoscale 7, 3164 (2015).

    Article  CAS  Google Scholar 

  38. Y.F. Deng, C.C. Fang, and G.H. Chen: The developments of SnO2/graphene nanocomposites as anode materials for high performance lithium ion batteries: A review. J. Power Sources 304, 81 (2016).

    Article  CAS  Google Scholar 

  39. J.S. Chen and X.W. Lou: SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 9, 1877 (2013).

    Article  CAS  Google Scholar 

  40. S. Zuo, D. Li, Z. Wu, Y. Sun, Q. Lu, F. Wang, R. Zhuo, D. Yan, J. Wang, and P. Yan: SnO2/graphene oxide composite material with high rate performance applied in lithium storage capacity. Electrochim. Acta 264, 61 (2018).

    Article  CAS  Google Scholar 

  41. Y. Li, Q. Meng, J. Ma, C. Zhu, J. Cui, Z. Chen, Z. Guo, T. Zhang, S. Zhu, and D. Zhang: Bioinspired carbon/SnO2 composite anodes prepared from a photonic hierarchical structure for lithium batteries. ACS Appl. Mater. Interfaces 7, 11146 (2015).

    Article  CAS  Google Scholar 

  42. D.Y. Song, S.S. Wang, R.Z. Liu, J.L. Jiang, Y. Jiang, S.S. Huang, W.R. Li, Z.W. Chen, and B. Zhao: Ultra-small SnO2 nanoparticles decorated on three-dimensional nitrogen-doped graphene aerogel for high-performance bind-free anode material. Appl. Surf. Sci. 478, 290 (2019).

    Article  CAS  Google Scholar 

  43. Y. Xiao, S. Liu, F. Li, A. Zhang, J. Zhao, S. Fang, and D. Jia: 3D hierarchical Co3O4 twin-spheres with an urchin-like structure: Large-scale synthesis, multistep-splitting growth, and electrochemical pseudocapacitors. Adv. Funct. Mater. 22, 4052 (2012).

    Article  CAS  Google Scholar 

  44. H. Chen, S. Lu, F. Gong, H. Liu, and F. Li: Stepwise splitting growth and pseudocapacitive properties of hierarchical three-dimensional Co3O4 nanobooks. Nanomater 7, 81 (2017).

    Article  CAS  Google Scholar 

  45. E. Meng, M. Zhang, Y. Hu, F. Gong, L. Zhang, and F. Li: Solid-state attachments of Ag nanoparticles onto the surfaces of LiFePO4 cathode materials for Li storage with enhanced capabilities. Electrochim. Acta 265, 160 (2018).

    Article  CAS  Google Scholar 

  46. S.H. Sun, G.W. Meng, G.X. Zhang, T. Gao, B.Y. Geng, L.D. Zhang, and J. Zuo: Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders. Chem. Phys. Lett. 376, 103 (2003).

    Article  CAS  Google Scholar 

  47. Y. Liu and M. Liu: Growth of aligned square-shaped SnO2 tube arrays. Adv. Funct. Mater. 15, 57 (2005).

    Article  CAS  Google Scholar 

  48. L. Noerochim, J-Z. Wang, S-L. Chou, H-J. Li, and H-K. Liu: SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries. Electrochim. Acta 56, 314 (2010).

    Article  CAS  Google Scholar 

  49. J. Liang, X-Y. Yu, H. Zhou, H.B. Wu, S. Ding, and X.W. Lou: Bowl-like SnO2@carbon hollow particles as an advanced anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 53, 12803 (2014).

    Article  CAS  Google Scholar 

  50. S. Li, W. Xie, S. Wang, X. Jiang, S. Peng, and D. He: Facile synthesis of rGO/SnO2 composite anodes for lithium ion batteries. J. Mater. Chem. A 2, 17139 (2014).

    Article  CAS  Google Scholar 

  51. X. Li, L. Qiao, D. Li, X. Wang, W. Xie, and D. He: Three-dimensional network structured alpha-Fe2O3 made from a stainless steel plate as a high-performance electrode for lithium ion batteries. J. Mater. Chem. A 1, 6400 (2013).

    Article  CAS  Google Scholar 

  52. Q. Zhang, Q.M. Gao, W.W. Qian, H. Zhang, Y.L. Tan, W.Q. Tian, Z.Y. Li, and H. Xiao: Graphene-based carbon coated tin oxide as a lithium ion battery anode material with high performance. J. Mater. Chem. A 5, 19136 (2017).

    Article  CAS  Google Scholar 

  53. W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Doctoral Foundation of Zhengzhou University of Light Industry (No. 2018BSJJ027), Key Program of Henan Province for Science and Technology (192102210018), and National Natural Science Foundation of China (Nos. 21071130 and 21371157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Li.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, F., Liu, M., Gong, L. et al. SnO2 nano-mulberries anchored onto RGO nanosheets for lithium ion batteries. Journal of Materials Research 35, 20–30 (2020). https://doi.org/10.1557/jmr.2019.247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.247

Navigation