Skip to main content
Log in

In situ synthesis of adsorptive β-Bi2O3/BiOBr photocatalyst with enhanced degradation efficiency

  • 2D and Nanomaterials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bismuth (Bi)-based photocatalytic materials are widely used in the field of photocatalytic degradation of wastewater. In this study, β-Bi2O3/BiOBr heterojunction photocatalysts were prepared by an in situ chemical transformation method. BiOBr molecules are arrayed to cross each other to form a pore around β-Bi2O3. The prepared photocatalyst had a large specific surface area and excellent adsorption and photocatalytic properties. The β-Bi2O3/BiOBr with a molecular ratio of 11.1% had the highest catalytic activity. The result of a degradation experiment, performed with Rhodamine B (RhB) as the target pollutant, revealed that the degradation rate reached 99.85% after 25 min under visible light irradiation. The pore structure can adsorb contaminants and the heterojunction facilitates the separation of photogenerated electron–hole pairs to enhance the photocatalytic properties. The high adsorption performance and heterojunction achieved higher photocatalytic efficiency. This semiconductor photocatalyst with high adsorption performance provides a new approach to control water pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. X. Li, J. Yu, M. Jaroniec, and X. Chen: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962–4179 (2019).

    CAS  Google Scholar 

  2. B. Qiao, Y. Chen, M. Tian, H. Wang, F. Yang, G. Shi, L. Zhang, C. Peng, Q. Luo, and S. Ding: Characterization of water soluble inorganic ions and their evolution processes during PM2.5 pollution episodes in a small city in southwest China. Sci. Total Environ. 650, 2605–2613 (2019).

    Article  CAS  Google Scholar 

  3. J. Xue and K. Kannan: Mass flows and removal of eight bisphenol analogs, bisphenol A diglycidyl ether and its derivatives in two wastewater treatment plants in New York State, USA. Sci. Total Environ. 648, 442–449 (2019).

    Article  CAS  Google Scholar 

  4. T. Kameda, S. Ito, and T. Yoshioka: Kinetic and equilibrium studies of urea adsorption onto activated carbon: Adsorption mechanism. J. Dispersion Sci. Technol. 38, 1063–1066 (2016).

    Article  CAS  Google Scholar 

  5. E. GilPavas, I. Dobrosz-Gomez, and M.A. Gomez-Garcia: Optimization and toxicity assessment of a combined electrocoagulation, H2O2/Fe2+/UV and activated carbon adsorption for textile wastewater treatment. Sci. Total Environ. 651, 551–560 (2019).

    Article  CAS  Google Scholar 

  6. I.K. Konstantinou and T.A. Albanis: TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations. Appl. Catal., B 49, 1–14 (2004).

    Article  CAS  Google Scholar 

  7. C.S. Turchi and D.F. Ollis: Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack. J. Catal. 122, 178–192 (1990).

    Article  CAS  Google Scholar 

  8. Y. Xie, Z. Huang, Z. Zhang, X. Zhang, R. Wen, Y. Liu, M. Fang, and X. Wu: Controlled synthesis and photocatalytic properties of rhombic dodecahedral Ag3PO4 with high surface energy. Appl. Surf. Sci. 389, 56–66 (2016).

    Article  CAS  Google Scholar 

  9. J. Han, Y. Liu, N. Singhal, L. Wang, and W. Gao: Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation. Chem. Eng. J. 213, 150–162 (2012).

    Article  CAS  Google Scholar 

  10. X. Yan, X. Yuan, J. Wang, Q. Wang, C. Zhou, D. Wang, H. Tang, J. Pan, and X. Cheng: Construction of novel ternary dual Z-scheme Ag3VO4/C3N4/reduced TiO2 composite with excellent visible-light photodegradation activity. J. Mater. Res. 34, 2024–2036 (2019).

    Article  CAS  Google Scholar 

  11. X. Ding, W. Wang, A. Zhang, L. Zhang, and D. Yu: Efficient visible light degradation of dyes in wastewater by nickel–phosphorus plating–titanium dioxide complex electroless plating fabric. J. Mater. Res. 34, 999–1010 (2019).

    Article  CAS  Google Scholar 

  12. D. Mohan and C.U. Pittman, Jr.: Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 142, 1–53 (2007).

    Article  CAS  Google Scholar 

  13. X. Wu, Y. Hu, Y. Wang, Y. Zhou, Z. Han, X. Jin, and G. Chen: In situ synthesis of Z-scheme Ag2CO3/Ag/AgNCO heterojunction photocatalyst with enhanced stability and photocatalytic activity. Appl. Surf. Sci. 464, 108–114 (2019).

    Article  CAS  Google Scholar 

  14. N. Wada, Y. Yokomizo, C. Yogi, M. Katayama, A. Tanaka, K. Kojima, Y. Inada, and K. Ozutsumi: Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. J. Mater. Res. 33, 467–481 (2018).

    Article  CAS  Google Scholar 

  15. S. Challagulla and S. Roy: The role of fuel to oxidizer ratio in solution combustion synthesis of TiO2 and its influence on photocatalysis. J. Mater. Res. 32, 2764–2772 (2017).

    Article  CAS  Google Scholar 

  16. L. Zammouri, A. Aboulaich, B. Capoen, M. Bouazaoui, M. Sarakha, M. Stitou, and R. Mahiou: Synthesis of YAG:Ce/ZnO core/shell nanoparticles with enhanced UV-visible and visible light photocatalytic activity and application for the antibiotic removal from aqueous media. J. Mater. Res. 34, 1318–1330 (2019).

    Article  CAS  Google Scholar 

  17. S. Liu, Y. Wang, L. Ma, and H. Zhang: Ni2P/ZnS (CdS) core/shell composites with their photocatalytic performance. J. Mater. Res. 33, 3580–3588 (2018).

    Article  CAS  Google Scholar 

  18. X. Gao, W. Peng, G. Tang, Q. Guo, and Y. Luo: Highly efficient and visible-light-driven BiOCl for photocatalytic degradation of carbamazepine. J. Alloys Compd. 757, 455–465 (2018).

    Article  CAS  Google Scholar 

  19. S.Y. Chai, Y.J. Kim, M.H. Jung, A.K. Chakraborty, D. Jung, and W.I. Lee: Heterojunctioned BiOCl/Bi2O3, a new visible light photocatalyst. J. Catal. 262, 144–149 (2009).

    Article  CAS  Google Scholar 

  20. A. Han, J. Sun, G.K. Chuah, and S. Jaenicke: Enhanced p-cresol photodegradation over BiOBr/Bi2O3 in the presence of rhodamine B. RSC Adv. 7, 145–152 (2017).

    Article  CAS  Google Scholar 

  21. H. Lu, Q. Hao, T. Chen, L. Zhang, D. Chen, C. Ma, W. Yao, and Y. Zhu: A high-performance Bi2O3/Bi2SiO5 p–n heterojunction photocatalyst induced by phase transition of Bi2O3. Appl. Catal., B 237, 59–67 (2018).

    Article  CAS  Google Scholar 

  22. J. Qin, N. Chen, C. Feng, H. Chen, M. Li, and Y. Gao: Fabrication of a narrow-band-gap Ag6Si2O7/BiOBr composite with high stability and enhanced visible-light photocatalytic activity. Catal. Lett. 148, 2777–2788 (2018).

    Article  CAS  Google Scholar 

  23. Y. Xie, S. Luo, H. Huang, Z. Huang, Y. Liu, M. Fang, X. Wu, and X. Min: Construction of an Ag3PO4 morphological homojunction for enhanced photocatalytic performance and mechanism investigation. Colloids Surf., A 546, 99–106 (2018).

    Article  CAS  Google Scholar 

  24. J. Low, J. Yu, M. Jaroniec, S. Wageh, and A.A. Al-Ghamdi: Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017).

    Article  CAS  Google Scholar 

  25. L. Wang, H. Liu, H. Fu, Y. Wang, K. Yu, and S. Wang: Polymer g-C3N4 wrapping bundle-like ZnO nanorod heterostructures with enhanced gas sensing properties. J. Mater. Res. 33, 1401–1410 (2018).

    Article  CAS  Google Scholar 

  26. Y. Sun, J. Liao, F. Dong, S. Wu, and L. Sun: A Bi/BiOI/(BiO)2CO3 heterostructure for enhanced photocatalytic NO removal under visible light. Chin. J. Catal. 40, 362–370 (2019).

    Article  CAS  Google Scholar 

  27. H. Zhong, Y. Qiu, T. Zhang, X. Li, H. Zhang, and X. Chen: Bismuth nanodendrites as high performance electrocatalyst for selective conversion of CO2 to formate. J. Mater. Chem. A 4, 13746–13753 (2016).

    Article  CAS  Google Scholar 

  28. H. Li, H. Zhu, M. Wang, X. Min, M. Fang, Z. Huang, Y.g. Liu, and X. Wu: A new Ag/Bi7Ta3O18 plasmonic photocatalyst with a visible-light-driven photocatalytic activity. J. Mater. Res. 32, 3650–3659 (2017).

    Article  CAS  Google Scholar 

  29. Z. Feng, L. Zeng, Y. Chen, Y. Ma, C. Zhao, R. Jin, Y. Lu, Y. Wu, and Y. He: In situ preparation of Z-scheme MoO3/g-C3N4 composite with high performance in photocatalytic CO2 reduction and RhB degradation. J. Mater. Res. 32, 3660–3668 (2017).

    Article  CAS  Google Scholar 

  30. R. He, D. Xu, B. Cheng, J. Yu, and W. Ho: Review on nanoscale Bi-based photocatalysts. Nanoscale Horiz. 3, 464–504 (2018).

    Article  CAS  Google Scholar 

  31. H.J. Jung, S. Park, K.D. Kim, T.H. Kim, M.Y. Choi, and K.Y. Lee: Fabrication of porous β-Bi2O3 nanoplates by phase transformation of bismuth precursor via low-temperature thermal decomposition process and their enhanced photocatalytic activity. Colloids Surf., A 550, 37–45 (2018).

    Article  CAS  Google Scholar 

  32. L. Zhou, W. Wang, H. Xu, S. Sun, and M. Shang: Bi2O3 hierarchical nanostructures: Controllable synthesis, growth mechanism, and their application in photocatalysis. Chem.–Eur. J. 15, 1776–1782 (2009).

    Article  CAS  Google Scholar 

  33. J. Li, Y. Yu, and L. Zhang: Bismuth oxyhalide nanomaterials: Layered structures meet photocatalysis. Nanoscale 6, 8473–8488 (2014).

    Article  CAS  Google Scholar 

  34. H-T. Wang, M-S. Shi, H-F. Yang, N. Chang, H. Zhang, Y-P. Liu, M-C. Lu, D. Ao, and D-Q. Chu: Template-free synthesis of nanosliced BiOBr hollow microspheres with high surface area and efficient photocatalytic activity. Mater. Lett. 222, 164–167 (2018).

    Article  CAS  Google Scholar 

  35. X. Zhang, Z. Ai, F. Jia, and L. Zhang: Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 112, 747–753 (2008).

    Article  CAS  Google Scholar 

  36. S. Liu, M. Zhao, Z. He, Y. Zhong, H. Ding, and D. Chen: Preparation of a p–n heterojunction 2D BiOI nanosheet/1DBiPO4 nanorod composite electrode for enhanced visible light photoelectrocatalysis. Chin. J. Catal. 40, 446–457 (2019).

    Article  CAS  Google Scholar 

  37. Y. Liang, C. Guo, S. Cao, Y. Tian, and Q. Lui: A high quality BiOCl film with petal-like hierarchical structures and its visible-light photocatalytic property. J. Nanosci. Nanotechnol. 13, 919–923 (2013).

    Article  CAS  Google Scholar 

  38. F. Zhang, L. Wang, M. Xiao, F. Liu, X. Xu, and E. Du: Construction of direct solid-state Z-scheme g-C3N4/BiOI with improved photocatalytic activity for microcystin-LR degradation. J. Mater. Res. 33, 201–212 (2017).

    Article  CAS  Google Scholar 

  39. F. Chen, Q. Yang, F. Yao, Y. Ma, Y. Wang, X. Li, D. Wang, L. Wang, and H. Yu: Synergetic transformations of multiple pollutants driven by BiVO4-catalyzed sulfite under visible light irradiation: Reaction kinetics and intrinsic mechanism. Chem. Eng. J. 355, 624–636 (2019).

    Article  CAS  Google Scholar 

  40. Q. Wang, H. Jiang, S. Ding, H.M. Noh, B.K. Moon, B.C. Choi, J. Shi, and J.H. Jeong: Butterfly-like BiVO4: Synthesis and visible light photocatalytic activity. Synth. React. Inorg. Met.–Org. Chem. 46, 483–488 (2015).

    Article  CAS  Google Scholar 

  41. S. Han, J. Li, K. Yang, and J. Lin: Fabrication of a β-Bi2O3/BiOI heterojunction and its efficient photocatalysis for organic dye removal. Chin. J. Catal. 36, 2119–2126 (2015).

    Article  CAS  Google Scholar 

  42. X. Li, J. Xie, C. Jiang, J. Yu, and P. Zhang: Review on design and evaluation of environmental photocatalysts. Front. Environ. Sci. Eng. 12, 14 (2018).

    Article  CAS  Google Scholar 

  43. J. Wang, L. Ren, D. Zhang, X. Hao, J. Gong, X. Xiao, Y. Jiang, and Z. Tong: Fabrication of Bi2MoO6/BiOI heterojunction photocatalysts for enhanced photodegradation of RhB. J. Mater. Res. 33, 3928–3935 (2018).

    Article  CAS  Google Scholar 

  44. S. You, Y. Hu, X. Liu, and C. Wei: Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3–TiO2 composite photocatalyst under visible light. Appl. Catal., B 232, 288–298 (2018).

    Article  CAS  Google Scholar 

  45. Y. Miao, Z. Lian, Y. Huo, and H. Li: Microwave-assisted ionothermal synthesis of hierarchical microcube-like BiOBr with enhanced photocatalytic activity. Chin. J. Catal. 39, 1411–1417 (2018).

    Article  CAS  Google Scholar 

  46. L. Shan, Y. Liu, H. Chen, Z. Wu, and Z. Han: An α-Bi2O3/BiOBr core–shell heterojunction with high photocatalytic activity. Dalton Trans. 46, 2310–2321 (2017).

    Article  CAS  Google Scholar 

  47. S. Cipagauta-Díaz, A. Estrella-González, and R. Gómez: Heterojunction formation on InVO4/N-TiO2 with enhanced visible light photocatalytic activity for reduction of 4-NP. Mater. Sci. Semicond. Process. 89, 201–211 (2019).

    Article  CAS  Google Scholar 

  48. Y. Guo, Y. Dai, W. Zhao, H. Li, B. Xu, and C. Sun: Highly efficient photocatalytic degradation of naphthalene by Co3O4/Bi2O2CO3 under visible light: A novel p–n heterojunction nanocomposite with nanocrystals/lotus-leaf-like nanosheets structure. Appl. Catal., B 237, 273–287 (2018).

    Article  CAS  Google Scholar 

  49. J. Yan, M. Xu, B. Chai, H. Wang, C. Wang, and Z. Ren: In situ construction of BiOBr/Ag3PO4 composites with enhanced visible light photocatalytic performances. J. Mater. Res. 32, 1603–1610 (2017).

    Article  CAS  Google Scholar 

  50. X. Tang, Z. Wang, N. Wu, S. Liu, and N. Liu: A novel visible-light-active β-Bi2O3/BiOBr heterojunction photocatalyst with remarkably enhanced photocatalytic activity. Catal. Commun. 119, 119–123 (2019).

    Article  CAS  Google Scholar 

  51. X. Liu, C. Sun, Y. Yue, T. Yan, Y. He, Y. Yu, W. Li, W. Wang, K. Zhu, and Z. Jing: Synthesis and characterization of three-dimensional sea urchin-like AgBr/TiO2 microspheres with enhanced antibacterial and visible-light photocatalytic performance. Chem. Pap. 73, 1971–1978 (2019).

    Article  CAS  Google Scholar 

  52. G. Lei: Novel visible-light-driven Pt/BiVO4 photocatalyst for efficient degradation of methyl orange. J. Mol. Catal. A: Chem. 282, 62–66 (2008).

    Article  CAS  Google Scholar 

  53. Y. Ohko, D.A. Tryk, K. Hashimoto, and A. Fujishima: Autoxidation of acetaldehyde initiated by TiO2 photocatalysis under weak UV illumination. J. Phys. Chem. B 102, 2699–2704 (1998).

    Article  CAS  Google Scholar 

  54. L. Shan, G. Wang, D. Li, X. San, L. Liu, L. Dong, and Z. Wu: Band alignment and enhanced photocatalytic activation of alpha/beta-Bi2O3 heterojunctions via in situ phase transformation. Dalton Trans. 44, 7835–7843 (2015).

    Article  CAS  Google Scholar 

  55. T. Hu, Y. Yang, K. Dai, J. Zhang, and C. Liang: A novel Z-scheme Bi2MoO6/BiOBr photocatalyst for enhanced photocatalytic activity under visible light irradiation. Appl. Surf. Sci. 456, 473–481 (2018).

    Article  CAS  Google Scholar 

  56. H-Y. Jiang, P. Li, G. liu, J. Ye, and J. Lin: Synthesis and photocatalytic properties of metastable β-Bi2O3 stabilized by surface-coordination effects. J. Mater. Chem. A 3, 5119–5125 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This present work was supported by the Fundamental Research Funds for the Central Universities for financial support (Grant Nos. 2652018325, 2652018321, and 2652018320) and National Key R&D Program of China (Grant No. 2018YFC190503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianmei Zhang or Zhaohui Huang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Xie, Y., Zhang, X. et al. In situ synthesis of adsorptive β-Bi2O3/BiOBr photocatalyst with enhanced degradation efficiency. Journal of Materials Research 34, 3450–3461 (2019). https://doi.org/10.1557/jmr.2019.243

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.243

Navigation