Skip to main content
Log in

Mechanical, tribological, and electrochemical behavior of hybrid aluminum matrix composite containing boron carbide (B4C) and graphene nanoplatelets

  • Novel Synthesis and Processing of Metals
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work, mechanical, tribological, and electrochemical behaviors of Al Alloy 6061–(0–10) % B4C–(0.25–1.2) % graphene nanoplatelets (GNPs) composites, prepared by a combination of solution mixing and powder metallurgy, were investigated. Properties such as hardness, compressive strength, wear rates, and coefficient of friction (COF) were used to investigate the effects of GNPs on mechanical and self-lubricating tribological behavior. The corrosion resistance of composites was investigated using potentiodynamic polarization and electrochemical impedance techniques. Scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), and EDS mapping were employed to study the distribution, the fracture profile, and wear mechanism. The AA 6061–10% B4C–0.6% GNPs composites exhibited sharp increase in hardness and compressive strength and significant decrease in wear rates and COF. However, for GNPs contents exceeding over 0.6 wt%, mechanical properties and wear performances deteriorated. Pulling out of sheared pultruded GNPs was observed during the fracture of composites. Worn surfaces of GNPs-containing composites showed the smeared graphene layer with some macro-cracks exhibiting delamination wear. It was found that the corrosion inhibition efficiency of GNPs was more pronounced in H3BO3 environment than in NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. A. El-Ghazaly, G. Anis, and H.G. Salem: Effect of graphene addition on the mechanical and tribological behavior of nanostructured AA2124 self-lubricating metal matrix composite. Composites, Part A 95, 325 (2017).

    Article  CAS  Google Scholar 

  2. R. Geng, F. Qiu, and Q.C. Jiang: Reinforcement in Al matrix composites: A review of strengthening behaviour of nano-sized particles. Adv. Eng. Mater. 20, 1701089 (2018).

    Article  Google Scholar 

  3. A. Baradeswaran and P.A. Elaya: Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Composites, Part B 54, 146 (2013).

    Article  CAS  Google Scholar 

  4. P. Shao, W. Yang, Q. Zhang, Q. Meng, X. Tan, Z. Xiu, and G. Wu: Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method. Composites, Part A 109, 151 (2018).

    Article  CAS  Google Scholar 

  5. Y. Lei, J. Jiang, T. Bi, J. Du, and X. Pang: Tribological behavior of in situ fabricated graphene–nickel matrix composites. RSC Adv. 8, 22113 (2018).

    Article  CAS  Google Scholar 

  6. R. din, Q.A. Shafqat, M. Shahzad, A. Ejaz, Z. Asghar, R. Nouman, A.H. Qureshi, A.S. Waqar, and A.P. Riffat: Inhibitor effects of sodium benzoate on corrosion resistance of Al 6061–B4C composites in NaCl and H3BO3 solutions. Mater. Res. Express 3, 126501 (2016).

    Article  Google Scholar 

  7. R. din, Q.A. Shafqat, M. Shahzad, A. Ejaz, Z. Asghar, G.H. Zahid, A. Basit, A.H. Qureshi, M. Tanvir, and A.N. Muhammad: Microstructural evolution, powder characteristics, compaction behavior and sinterability of Al 6061–B4C composites as a function of reinforcement content and milling times. Russ. J. Non-Ferrous Metals 59, 207 (2018).

    Article  Google Scholar 

  8. Z. Asghar, A.F. Muhammad, R. Din, N. Zeeshan, A. Fahad, A. Basit, S. Badshah, and T. Subhani: Effect of distribution of B4C on the mechanical behaviour of Al-6061/B4C composite. Powder Metall. 61, 293 (2018).

    Article  CAS  Google Scholar 

  9. M. Rashad, F. Pan, A. Tang, and M. Asif: Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog. Nat. Sci.: Mater. Int. 24, 101 (2014).

    Article  CAS  Google Scholar 

  10. S. Xiang, X. Wang, M. Gupta, K. Wu, X. Hu, and M. Zheng: Graphene nanoplatelets induced heterogeneous bimodal structural magnesium matrix composites with enhanced mechanical properties. Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  11. M. Khan, M. Amjad, A. Khan, R. din, I. Ahmad, and T. Subhani: Microstructural evolution, mechanical profile, and fracture morphology of aluminum matrix composites containing graphene nanoplatelets. J. Mater. Res. 32, 2055 (2017).

    Article  CAS  Google Scholar 

  12. D. Jeyasimman, S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and R.S. Kambali: An investigation of the synthesis, consolidation and mechanical behaviour of Al 6061 nanocomposites reinforced by TiC via mechanical alloying. Mater. Des. 57, 394 (2014).

    Article  CAS  Google Scholar 

  13. J.B. Fogagnolo, F. Velasco, M.H. Robert, and J.M. Torralba: Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powder. Mater. Sci. Eng., A 342, 131 (2003).

    Article  Google Scholar 

  14. M.C. Şenel, M. Gürbüz, and E. Koç: Fabrication and characterization of synergistic Al–SiC–GNPs hybrid composites. Composites, Part B 154, 1 (2018).

    Article  Google Scholar 

  15. M. Khan, A. Rehman, T. Aziz, K. Naveed, I. Ahmad, and T. Subhani: Cold formability of friction stir processed aluminium composites containing carbon nanotubes and boron carbide particles. Mater. Sci. Eng., A 696, 552 (2017).

    Article  CAS  Google Scholar 

  16. M. Khan, M. Zulfaqar, A. Fahad, and T. Subhani: Microstructural and mechanical characterization of hybrid aluminum matrix composite containing boron carbide and Al–Cu–Fe quasicrystals. Met. Mater. Int. 23, 813 (2017).

    Article  CAS  Google Scholar 

  17. J. Singh and A. Chauhan: Characterization of hybrid aluminium matrix composites for advanced applications—A review. J. Mater. Res. Technol. 5, 159 (2016).

    Article  CAS  Google Scholar 

  18. M.O. Bodunrin, K.K. Alaneme, and L.H. Chown: Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 4, 434 (2015).

    Article  CAS  Google Scholar 

  19. A. Radha and K.R. Vijayakumar: An investigation of mechanical and wear properties of AA 6061 reinforced with silicon carbide and graphene nano particles-Particulate composites. Mater. Today: Proc. 3, 2247 (2016).

    Google Scholar 

  20. X. Zeng, J. Yu, D. Fu, H. Zhang, and J. Teng: Wear characteristics of hybrid aluminum-matrix composites reinforced with well-dispersed reduced graphene oxide nanosheets and silicon carbide particulates. Vacuum 155, 364 (2018).

    Article  CAS  Google Scholar 

  21. X.C. Tang, L.Y. Meng, J.M. Zhan, W.R. Jian, W.H. Li, X.H. Yao, and Y.L. Han: Strengthening effects of encapsulating graphene in SiC particle-reinforced Al-matrix composites. Comput. Mater. Sci. 153, 275 (2018).

    Article  CAS  Google Scholar 

  22. T.K. Meysam, J.B. Ferguson, F. Schultz, K. Chang-Soo, C. Kyu, and K.R. Pradeep: Strengthening mechanisms of graphene- and Al2O3-reinforced aluminum nanocomposites synthesized by room temperature milling. Mater. Des. 92, 79 (2016).

    Article  Google Scholar 

  23. M. Alizadeh, A. Hossein, M. Ghaffari, and R. Amini: Properties of high specific strength Al–4 wt% Al2O3/B4C nano-composite produced by accumulative roll bonding process. Mater. Des. 50, 427 (2013).

    Article  CAS  Google Scholar 

  24. C. Gode: Mechanical properties of hot pressed SiCp and B4Cp/Alumix 123 composites alloyed with minor Zr. Composites, Part B 54, 34 (2013).

    Article  CAS  Google Scholar 

  25. C.M. Rejil, I. Dinaharan, S.J. Vijay, and N. Murugan: Microstructure and sliding wear behaviour of AA6360/(TiC + B4C) hybrid surface composite layer synthesized by friction stir processing on aluminium substrate. Mater. Sci. Eng., A 552, 336 (2012).

    Article  CAS  Google Scholar 

  26. D.G. Papageorgiou, I.A. Kinloch, and R.J. Young: Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75 (2017).

    Article  CAS  Google Scholar 

  27. A.K. Mishra and R. Balasubramaniam: Corrosion inhibition of aluminium by rare earth chlorides. Mater. Chem. Phys. 103, 385 (2007).

    Article  CAS  Google Scholar 

  28. T.K. Meysam, O. Emad, M.L. Pradeep, and R.K. Pradeep: Tribological performance of self-lubricating aluminium matrix nanocomposites: Role of graphene nanoplatelets. Eng. Sci. Technol. Int J. 19, 463 (2016).

    Google Scholar 

  29. J. Hu, Y. Ji, Y. Shi, F. Hui, H. Duan, and M. Lanza: A review on the use of graphene as a protective coating against corrosion. Ann. J. Mater. Sci. Eng. 1, 16 (2014).

    Google Scholar 

  30. N.T. Kirkland, T. Schiller, N. Medhekar, and N. Birbilis: Exploring graphene as a corrosion protection barrier. Corros. Sci. 56, 1 (2012).

    Article  CAS  Google Scholar 

  31. M. Rashad, F. Pan, Y. Zhengwen, M. Asif, L. Han, and P. Rongjian: Investigation on microstructural, mechanical and electrochemical properties of aluminium composites reinforced with graphene nanoplatelets. Prog. Nat. Sci.: Mater. Int. 125, 460 (2015).

    Article  Google Scholar 

  32. A. Nazli and U. Deniz: Processing and characterization of graphene nano-platelet (GNP) reinforced aluminum matrix composites. Mater. Test. 58, 946 (2016).

    Article  Google Scholar 

  33. R. Perez-Bustanmante, D. Bolaños-Morales, J. Bonilla-Martínez, I. Estrada-Guel, and R. Martínez-Sánchez: Microstructural and hardness behaviour of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. J. Alloys Compd. 615, s578 (2014).

    Article  Google Scholar 

  34. C. Jeon, Y. Jeong, J. Seo, H.N. Tien, S. Hong, Y. Yum, S. Hur, and K. Lee: Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int. J. Precis. Eng. Manuf. 15, 1235 (2014).

    Article  Google Scholar 

  35. M. Fattahi, A.R. Gholami, A. Eynalvandpour, E. Ahmadi, Y. Fattahi, and S. Akhavan: Improved microstructure and mechanical properties in gas tungsten arc welded aluminum joints by using graphene nanosheets/aluminum composite filler wires. Micron 64, 20 (2014).

    Article  CAS  Google Scholar 

  36. A. Saboori, M. Dadkhah, P. Fino, and M. Pavese: An overview of metal matrix nanocomposites reinforced with graphene nanoplatelets; mechanical, electrical and thermophysical properties. Metals 8, 423 (2018).

    Article  Google Scholar 

  37. A. Mazahery and M.O. Shabanim: Microstructural and abrasive wear properties of SiC reinforced aluminium-based composite produced by compo casting. Trans. Nonferrous Met. Soc. China 23, 1905 (2013).

    Article  CAS  Google Scholar 

  38. H. Hocheng, S.B. Yen, T. Ishihara, and B.K. Yen: Fundamental turning characteristics of a tribology-favored graphite/aluminum alloy composite material. Composites, Part A 28, 883 (1997).

    Article  Google Scholar 

  39. V. Victor, E. Svetlana, P. Alexandr, and S. Alexey: Electrochemical properties of aluminum–graphene composite anodes. Int. J. Electrochem. Sci. 11, 8981 (2016).

    Google Scholar 

  40. V. Mišković-Stanković, I. Jevremović, I. Jung, and K.Y. Rhee: Electrochemical study of corrosion behaviour of graphene coatings on copper and aluminium in a chloride solution. Carbon 75, 335 (2014). Part A Appl. Sci. Manuf. 95, 325 (2017).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Head, Materials Division, PINSTECH, Islamabad, for permitting us to utilize the facilities and resources for this work. The authors also feel indebted to the Chairman, Materials Division, IST, Islamabad, for the generous support in tribological, mechanical, and microstructural characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafi-ud-din.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

shafqat, Q.A., Rafi-ud-din, Shahzad, M. et al. Mechanical, tribological, and electrochemical behavior of hybrid aluminum matrix composite containing boron carbide (B4C) and graphene nanoplatelets. Journal of Materials Research 34, 3116–3129 (2019). https://doi.org/10.1557/jmr.2019.242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.242

Navigation