Skip to main content

Advertisement

Log in

Low temperature–controlled synthesis of hierarchical Cu2O/Cu(OH)2/CuO nanostructures for energy applications

  • Energy Conversion and Storage Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nano-forms of copper oxides (CuO and Cu2O) are potential candidates in the field of energy conversion and storage. Low temperature and controlled growth of three-dimensional nanostructured hierarchical assembly of CuO over Cu2O is reported here with demonstrated advantage in energy conversion and storage applications. Electrodeposited Cu2O is partially oxidized in an alkali bath to two different forms of hierarchical nanostructures (HNS): CuO/Cu2O and CuO:Cu(OH)2/Cu2O. Randomly oriented nanorods and nanoflakes with high surface area tussock-like nanostructure are formed during oxidation at room and at elevated temperatures, respectively. The nanoflake morphology exhibits a high surface area of 85.82 m2/g and sufficient ion percolation pathways, leading to an efficient electrode–electrolyte interface for electrochemical energy devices. A favorable conduction and valence band alignment in the HNS with respect to water redox level along with fast electron diffusion time of 0.8 µs make it an ideal photocathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. S. Tajik, D.P. Dubal, P. Gomez-Romero, A. Yadegari, A. Rashidi, B. Nasernejad, and A.M. Asiri: Nanostructured mixed transition metal oxides for high performance asymmetric supercapacitors: Facile synthetic strategy. Int. J. Hydrogen Energy 42, 12384 (2017).

    Article  CAS  Google Scholar 

  2. Z. Endut, M. Hamdi, and W. Basirun: Pseudocapacitive performance of vertical copper oxide nanoflakes. Thin Solid Films 528, 213 (2013).

    Article  CAS  Google Scholar 

  3. D.P. Dubal, G.S. Gund, R. Holze, H.S. Jadhav, C.D. Lokhande, and C-J. Park: Surfactant-assisted morphological tuning of hierarchical CuO thin films for electrochemical supercapacitors. Dalton Trans. 42, 6459 (2013).

    Article  CAS  Google Scholar 

  4. G. Wang, L. Zhang, and J. Zhang: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).

    Article  CAS  Google Scholar 

  5. B. Vidyadharan, I.I. Misnon, J. Ismail, M.M. Yusoff, and R. Jose: High performance asymmetric supercapacitors using electrospun copper oxide nanowires anode. J. Alloys Compd. 633, 22 (2015).

    Article  CAS  Google Scholar 

  6. P. Mallick and S. Sahu: Structure, microstructure and optical absorption analysis of CuO nanoparticles synthesized by sol–gel route. Nanosci. Nanotechnol. 2, 71 (2012).

    Article  CAS  Google Scholar 

  7. H. Zhu, J. Wang, and G. Xu: Fast synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus. Cryst. Growth Des. 9, 633 (2008).

    Article  CAS  Google Scholar 

  8. X. Zhou, H. Nie, Z. Yao, Y. Dong, Z. Yang, and S. Huang: Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sens. Actuators, B 168, 1 (2012).

    Article  CAS  Google Scholar 

  9. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li: Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem. Mater. 18, 867 (2006).

    Article  CAS  Google Scholar 

  10. X. Zhang, G. Wang, W. Zhang, Y. Wei, and B. Fang: Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens. Bioelectron. 24, 3395 (2009).

    Article  CAS  Google Scholar 

  11. X. Zhao, Y. Jin, C. Xiang, J. Jin, M. Ding, S. Wu, C. Jia, and L. Sun: Conformal filling of TiO2 nanotubes with dense MxSy films for 3D heterojunctions: The anion effect. ChemElectroChem 6, 1177 (2019).

    Article  CAS  Google Scholar 

  12. X. Zhao, J. Huang, Y. Wang, C. Xiang, D. Sun, L. Wu, X. Tang, K. Sun, Z. Zang, and L. Sun: Interdigitated CuS/TiO2 nanotube bulk heterojunctions achieved via ion exchange. Electrochim. Acta 199, 180 (2016).

    Article  CAS  Google Scholar 

  13. L. Sun, Y. Huang, M.A. Hossain, K. Li, S. Adams, and Q. Wang: Fabrication of TiO2/CuSCN bulk heterojunctions by profile-controlled electrodeposition. J. Electrochem. Soc. 159, D323 (2012).

    Article  CAS  Google Scholar 

  14. M. Kuang, T.T. Li, H. Chen, S.M. Zhang, L.L. Zhang, and Y.X. Zhang: Hierarchical Cu2O/CuO/Co3O4 core–shell nanowires: Synthesis and electrochemical properties Nanotechnology 26, 304002 (2015).

    Article  CAS  Google Scholar 

  15. C. Xiang, X. Zhao, L. Tan, J. Ye, S. Wu, S. Zhang, and L. Sun: A solar tube: Efficiently converting sunlight into electricity and heat. Nano Energy 55, 269 (2019).

    Article  CAS  Google Scholar 

  16. A. Ulyankina, I. Leontyev, O. Maslova, M. Allix, A. Rakhmatullin, N. Nevzorova, R. Valeev, G. Yalovega, and N. Smirnova: Copper oxides for energy storage application: Novel pulse alternating current synthesis. Mater. Sci. Semicond. Process. 73, 111 (2018).

    Article  CAS  Google Scholar 

  17. M. Harilal, B. Vidyadharan, I.I. Misnon, G.M. Anilkumar, A. Lowe, J. Ismail, M.M. Yusoff, and R. Jose: One-dimensional assembly of conductive and capacitive metal oxide electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 9, 10730 (2017).

    Article  CAS  Google Scholar 

  18. S.K. Shinde, D.P. Dubal, G.S. Ghodake, and V.J. Fulari: Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RSC Adv. 5, 4443 (2015).

    Article  CAS  Google Scholar 

  19. G. Navathe, D. Patil, P. Jadhav, D. Awale, A. Teli, S. Bhise, S. Kolekar, M. Karanjkar, J. Kim, and P. Patil: Rapid synthesis of nanostructured copper oxide for electrochemical supercapacitor based on novel [HPMIM][Cl] ionic liquid. J. Electroanal. Chem. 738, 170 (2015).

    Article  CAS  Google Scholar 

  20. B. Vidhyadharan, I.I. Misnon, R.A. Aziz, K. Padmasree, M.M. Yusoff, and R. Jose: Superior supercapacitive performance in electrospun copper oxide nanowire electrodes. J. Mater. Chem. A 2, 6578 (2014).

    Article  CAS  Google Scholar 

  21. D.P. Dubal, G.S. Gund, C.D. Lokhande, and R. Holze: CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition. Mater. Res. Bull. 48, 923 (2013).

    Article  CAS  Google Scholar 

  22. Y-K. Hsu, Y-C. Chen, and Y-G. Lin: Characteristics and electrochemical performances of lotus-like CuO/Cu (OH)2 hybrid material electrodes. J. Electroanal. Chem. 673, 43 (2012).

    Article  CAS  Google Scholar 

  23. R.P. Wijesundera: Electrodeposited Cu2O thin films for fabrication of CuO/Cu2O heterojunction. In Solar Cells-Thin-Film Technologies (InTech, Rijeka, Croatia, 2011); pp. 89–110.

    Google Scholar 

  24. J. Zhang, H. Feng, Q. Qin, G. Zhang, Y. Cui, Z. Chai, and W. Zheng: Interior design of three-dimensional CuO ordered architectures with enhanced performance for supercapacitors. J. Mater. Chem. A 4, 6357 (2016).

    Article  CAS  Google Scholar 

  25. C. Li, H. Yamahara, Y. Lee, H. Tabata, and J-J. Delaunay: CuO nanowire/microflower/nanowire modified Cu electrode with enhanced electrochemical performance for non-enzymatic glucose sensing. Nanotechnology 26, 305503 (2015).

    Article  CAS  Google Scholar 

  26. G. Fan and F. Li: Effect of sodium borohydride on growth process of controlled flower-like nanostructured Cu2O/CuO films and their hydrophobic property. Chem. Eng. J. 167, 388 (2011).

    Article  CAS  Google Scholar 

  27. G.V. Govindaraju, G.P. Wheeler, D. Lee, and K-S. Choi: Methods for electrochemical synthesis and photoelectrochemical characterization for photoelectrodes. Chem. Mater. 29, 355 (2016).

    Article  CAS  Google Scholar 

  28. M. Izaki, T. Shinagawa, K-T. Mizuno, Y. Ida, M. Inaba, and A. Tasaka: Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device. J. Phys. D: Appl. Phys. 40, 3326 (2007).

    Article  CAS  Google Scholar 

  29. W. Zhang, X. Wen, and S. Yang: Controlled reactions on a copper surface: Synthesis and characterization of nanostructured copper compound films. Inorg. Chem. 42, 5005 (2003).

    Article  CAS  Google Scholar 

  30. M. Cho, K. Yoon, and B. Song: Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate: Synthesis and characterization. J. Appl. Polym. Sci. 83, 1397 (2002).

    Article  CAS  Google Scholar 

  31. Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang: CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208 (2014).

    Article  CAS  Google Scholar 

  32. M. Dar, Q. Ahsanulhaq, Y. Kim, J. Sohn, W. Kim, and H. Shin: Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism. Appl. Surf. Sci. 255, 6279 (2009).

    Article  CAS  Google Scholar 

  33. J.Y. Zheng, T-K. Van, A.U. Pawar, C.W. Kim, and Y.S. Kang: One-step transformation of Cu to Cu2O in alkaline solution. RSC Adv. 4, 18616 (2014).

    Article  CAS  Google Scholar 

  34. A-m. Cao, J.D. Monnell, C. Matranga, J-m. Wu, L-l. Cao, and D. Gao: Hierarchical nanostructured copper oxide and its application in arsenic removal. J. Phys. Chem. C 111, 18624 (2007).

    Article  CAS  Google Scholar 

  35. M. Yin, C-K. Wu, Y. Lou, C. Burda, J.T. Koberstein, Y. Zhu, and S. O’Brien: Copper oxide nanocrystals. J. Am. Chem. Soc. 127, 9506 (2005).

    Article  CAS  Google Scholar 

  36. J. Shaikh, R. Pawar, R. Devan, Y. Ma, P. Salvi, S. Kolekar, and P. Patil: Synthesis and characterization of Ru doped CuO thin films for supercapacitor based on Bronsted acidic ionic liquid. Electrochim. Acta 56, 2127 (2011).

    Article  CAS  Google Scholar 

  37. D. Skoog, F.J. Holler, and S. Crouch: Principles of Instrumental Analysis (Thomson Brooks Cole, Canada, 2007).

    Google Scholar 

  38. G.A. Carriedo: The use of cyclic voltammetry in the study of the chemistry of metal-carbonyls: An introductory experiment. J. Chem. Educ. 65, 1020 (1988).

    Article  CAS  Google Scholar 

  39. P.T. Kissinger and W.R. Heineman: Cyclic voltammetry. J. Chem. Educ. 60, 702 (1983).

    Article  CAS  Google Scholar 

  40. J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, and Z.X. Shen: Advanced energy storage devices: Basic principles, analytical methods, and rational materials design. Adv. Sci. 5, 1700322 (2018).

    Article  CAS  Google Scholar 

  41. D. MacArthur: The proton diffusion coefficient for the nickel hydroxide electrode. J. Electrochem. Soc. 117, 729 (1970).

    Article  Google Scholar 

  42. V. Sharma, I. Singh, and A. Chandra: Hollow nanostructures of metal oxides as next generation electrode materials for supercapacitors. Sci. Rep. 8, 1307 (2018).

    Article  CAS  Google Scholar 

  43. M.E. Orazem and B. Tribollet: Electrochemical Impedance Spectroscopy (John Wiley & Sons, Inc., Hoboken, New Jersey, 2011).

    Google Scholar 

  44. B-Y. Chang and S-M. Park: Electrochemical impedance spectroscopy. Annu. Rev. Anal. Chem. 3, 207 (2010).

    Article  CAS  Google Scholar 

  45. J.R. Macdonald and E. Barsoukov: Impedance Spectroscopy: Theory, Experiment, and Applications History, Vol. 1 (John Wiley & Sons, Inc., Hoboken, New Jersey, 2005); p. 1.

    Book  Google Scholar 

  46. P. Taberna, P. Simon, and J-F. Fauvarque: Electrochemical characteristics and impedance spectroscopy studies of carbon–carbon supercapacitors. J. Electrochem. Soc. 150, A292 (2003).

    Article  CAS  Google Scholar 

  47. M. Patel and A. Ray: Evaluation of back contact in spray deposited SnS thin film solar cells by impedance analysis. ACS Appl. Mater. Interfaces 6, 10099 (2014).

    Article  CAS  Google Scholar 

  48. M. Morad: An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions. Corros. Sci. 42, 1307 (2000).

    Article  CAS  Google Scholar 

  49. P. De Jongh, D. Vanmaekelbergh, and J. Kelly: Cu2O: Electrodeposition and characterization. Chem. Mater. 11, 3512 (1999).

    Article  Google Scholar 

  50. F. Marabelli, G. Parravicini, and F. Salghetti-Drioli: Optical gap of CuO. Phys. Rev. B 52, 1433 (1995).

    Article  CAS  Google Scholar 

  51. A. Ray, I. Mukhopadhyay, R. Pati, Y. Hattori, U. Prakash, Y. Ishii, and S. Kawasaki: Optimization of photoelectrochemical performance in chemical bath deposited nanostructured CuO. J. Alloys Compd. 695, 3655 (2017).

    Article  CAS  Google Scholar 

  52. M. Patel, R. Pati, P. Marathey, J. Kim, I. Mukhopadhyay, and A. Ray: Highly photoactive and photo-stable spray pyrolyzed tenorite CuO thin films for photoelectrochemical energy conversion. J. Electrochem. Soc. 163, H1195 (2016).

    Article  CAS  Google Scholar 

  53. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, and E. Thimsen: Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 10, 456 (2011).

    Article  CAS  Google Scholar 

  54. C. Niveditha, M.J. Fatima, and S. Sindhu: Comprehensive interfacial study of potentio-dynamically synthesized copper oxide thin films for photoelectrochemical applications. J. Electrochem. Soc. 163, H426 (2016).

    Article  CAS  Google Scholar 

  55. Z. Zhang and P. Wang: Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 22, 2456 (2012).

    Article  CAS  Google Scholar 

  56. X. Liu, J. Chen, P. Liu, H. Zhang, G. Li, T. An, and H. Zhao: Controlled growth of CuO/Cu2O hollow microsphere composites as efficient visible-light-active photocatalysts. Appl. Catal., A 521, 34 (2016).

    Article  CAS  Google Scholar 

  57. Y-F. Lim, C.S. Chua, C.J.J. Lee, and D. Chi: Sol–gel deposited Cu2O and CuO thin films for photocatalytic water splitting. Phys. Chem. Chem. Phys. 16, 25928 (2014).

    Article  CAS  Google Scholar 

  58. D.P. Dubal, G.S. Gund, R. Holze, and C.D. Lokhande: Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors. J. Power Sources 242, 687 (2013).

    Article  CAS  Google Scholar 

  59. P. Marathey, R. Pati, I. Mukhopadhyay, and A. Ray: Effect of annealing temperature on the PEC performance of electrodeposited copper oxides. AIP Conf. Proc. 1961, 030045 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (PM) gratefully acknowledges and appreciates the Council of Scientific and Industrial Research (CSIR), New Delhi, for providing financial assistance through Senior Research Fellowship (via Grant Nos. 9/1074 (0001)/2017-EMR-1); Dr. C Balasubramanian, Facilitation Centre for Industrial Plasma Technologies, Institute for Plasma Research, Gandhinagar, for TEM analysis; and the Central Surface Analytical Facility of IIT Bombay for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Ray.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marathey, P., Khanna, S., Pati, R. et al. Low temperature–controlled synthesis of hierarchical Cu2O/Cu(OH)2/CuO nanostructures for energy applications. Journal of Materials Research 34, 3173–3185 (2019). https://doi.org/10.1557/jmr.2019.231

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.231

Navigation