Skip to main content

Advertisement

Log in

Enhanced capacitive performance of activated carbon paper electrode material

  • Energy Conversion and Storage Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The activated carbon paper (ACP) has been designed as the active electrode material of supercapacitor to improve its capacitive performance. ACP is prepared by electrochemical nitrate ion–assisted exfoliation, sulfate ion–assisted exfoliation, and subsequent hydrothermal reduction processes. The as-prepared ACP shows obviously rougher surface along with the expanded layer distance. ACP exhibits higher specific capacitance of 380 mF/cm2 at 1 mA/cm2 than that of 21 mF/cm2 for carbon paper. ACP electrode shows the cycling capacitance retention of 98% after 5000 cycles at 10 mA/cm2. The symmetric ACP supercapacitor is constructed using ACP electrode and H2SO4 involved polyvinyl alcohol gel electrolyte. ACP supercapacitor presents the specific capacitance of 97 mF/cm2, the energy density of 0.343 mW h/cm3, and the output voltage of 1.6 V at 1 mA/cm2. ACP with high capacitance performance presents the promising supercapacitor application for the electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. G.P. Wang, L. Zhang, and J.J. Zhang: A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797 (2012).

    Article  CAS  Google Scholar 

  2. Y. Xie and Y. Zhou: Enhanced electrochemical stability of CuCo bimetallic-coordinated polypyrrole. Electrochim. Acta 290, 419 (2018).

    Article  CAS  Google Scholar 

  3. Y. Xie: Electrochemical performance of transition metal-coordinated polypyrrole: A mini review. Chem. Rec. 19, 1 (2019).

    Article  Google Scholar 

  4. Y. Xie and J. Wang: Capacitance performance of carbon paper supercapacitor using redox-mediated gel polymer electrolyte. J. Sol-Gel Sci. Technol. 86, 760 (2018).

    Article  CAS  Google Scholar 

  5. Y. Xie and X. Sha: Electrochemical cycling stability of nickel(II) coordinated polyaniline. Synth. Met. 237, 29 (2018).

    Article  CAS  Google Scholar 

  6. Y. Xie and P. Sun: Electrochemical performance of interspace-expanded molybdenum disulfide few-layer. J. Nanopart. Res. 20, 183 (2018).

    Article  Google Scholar 

  7. P. Li, C. Ruan, J. Xu, and Y. Xie: Enhanced capacitive performance of CoO-modified NiMoO4 nanohybrid as advanced electrodes for asymmetric supercapacitor. J. Alloys Compd. 791, 152 (2019).

    Article  CAS  Google Scholar 

  8. S. Shilpa and A. Sharma: Free standing hollow carbon nanofiber mats for supercapacitor electrodes. RSC Adv. 6, 78528 (2016).

    Article  CAS  Google Scholar 

  9. Y. Zhou and Y. Xie: Enhanced electrochemical stability of carbon quantum dots-incorporated and ferrous-coordinated polypyrrole for supercapacitor. J. Solid State Electrochem. 22, 2515 (2018).

    Article  CAS  Google Scholar 

  10. L. Lu, Y. Xie, and Z. Zhao: Improved electrochemical stability of NixCo2x(OH)6x/NiCo2O4 electrode material. J. Alloys Compd. 731, 903 (2018).

    Article  CAS  Google Scholar 

  11. A.M. Abioye and F.N. Ani: Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review. Renewable Sustainable Energy Rev. 52, 1282 (2015).

    Article  CAS  Google Scholar 

  12. L. Lu and Y. Xie: Phosphomolybdic acid cluster bridging carbon dots and polyaniline nanofibers for effective electrochemical energy storage. J. Mater. Sci. 54, 4842 (2019).

    Article  CAS  Google Scholar 

  13. D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, and S. Iijima: Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 5, 987 (2006).

    Article  CAS  Google Scholar 

  14. L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, and W.Y. Lee: Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem. Commun. 13, 355 (2011).

    Article  CAS  Google Scholar 

  15. A. Ghosh and Y.H. Lee: Carbon-based electrochemical capacitors. Chemsuschem 5, 480 (2012).

    Article  CAS  Google Scholar 

  16. C.X. Hu, Y.Y. He, S.L. Chen, Y.M. Zhu, M. Hanif, and H.Q. Hou: Binder-free activated carbon papers for high-performance electric double-layer capacitors. J. Solid State Electrochem. 18, 2797 (2014).

    Article  CAS  Google Scholar 

  17. Z. Zhao, Y. Xie, and L. Lu: Electrochemical performance of polyaniline-derivated nitrogen-doped carbon nanowires. Electrochim. Acta 283, 1618 (2018).

    Article  CAS  Google Scholar 

  18. Z. Zhao and Y. Xie: Electrochemical supercapacitor performance of boron and nitrogen co-doped porous carbon nanowires. J. Power Sources 400, 264 (2018).

    Article  CAS  Google Scholar 

  19. H.Y. Li, Y. Yu, L. Liu, L. Liu, and Y. Wu: One-step electrochemically expanded graphite foil for flexible all-solid supercapacitor with high rate performance. Electrochim. Acta 228, 553 (2017).

    Article  CAS  Google Scholar 

  20. W. Li, F. Zhang, Y. Dou, Z. Wu, H. Liu, X. Qian, D. Gu, Y. Xia, B. Tu, and D. Zhao: A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv. Energy Mater. 1, 382 (2011).

    Article  CAS  Google Scholar 

  21. L. Hu, M. Pasta, F. La Mantia, L. Cui, S. Jeong, H.D. Deshazer, J.W. Choi, S.M. Han, and Y. Cui: Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708 (2010).

    Article  CAS  Google Scholar 

  22. Y-Y. Horng, Y-C. Lu, Y-K. Hsu, C-C. Chen, L-C. Chen, and K-H. Chen: Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J. Power Sources 195, 4418 (2010).

    Article  CAS  Google Scholar 

  23. G. Chen, W. Zhai, Z. Wang, J. Yu, F. Wang, Y. Zhao, and G. Li: Fabrication and supercapacitive properties of hierarchical porous carbon from polyacrylonitrile. Mater. Res. Bull. 72, 204 (2015).

    Article  CAS  Google Scholar 

  24. E.J. Lee, Y.J. Lee, J.K. Kim, M. Lee, J. Yi, J.R. Yoon, J.C. Song, and I.K. Song: Oxygen group-containing activated carbon aerogel as an electrode material for supercapacitor. Mater. Res. Bull. 70, 209 (2015).

    Article  CAS  Google Scholar 

  25. X. Fan, Y. Li, S. Wang, Y. Lu, H. Xu, J. Liu, and C. Yan: Investigation on the pseudocapacitive characteristics of the electrochemically modified graphite electrode in electrolytes with different pH. Electrochim. Acta 176, 70 (2015).

    Article  CAS  Google Scholar 

  26. Y.F. Qiu, H.F. Dang, Z.Y. Cheng, X.Z. Lin, L.S. Wang, H.B. Fan, and R.W. Wang: Preparation of activated carbon paper by a novel method and application as high-performance supercapacitors. Ionics 22, 529 (2016).

    Article  CAS  Google Scholar 

  27. G. Xin, Y. Wang, J. Zhang, S. Jia, J. Zang, and Y. Wang: A self-supporting graphene/MnO2 composite for high-performance supercapacitors. Int. J. Hydrogen Energy 40, 10176 (2015).

    Article  CAS  Google Scholar 

  28. Y. Song, D-Y. Feng, T-Y. Liu, Y. Li, and X-X. Liu: Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors. Nanoscale 7, 3581 (2015).

    Article  CAS  Google Scholar 

  29. Z. Mao, S. Zhao, J. Wang, Y. Zeng, X. Lu, and Y. Tong: Facile synthesis of nitrogen-doped porous carbon as robust electrode for supercapacitors. Mater. Res. Bull. 101, 140 (2018).

    Article  CAS  Google Scholar 

  30. P.R. Singh and X. Zeng: Size-dependent intercalation of ions into highly oriented pyrolytic graphite in ionic liquids: An electrochemical atomic force microscopy study. J. Phys. Chem. C 115, 17429 (2011).

    Article  CAS  Google Scholar 

  31. G.K. Ramesha and S. Sampath: Electrochemical reduction of oriented graphene oxide films: An in situ Raman spectroelectrochemical study. J. Phys. Chem. C 113, 7985 (2009).

    Article  CAS  Google Scholar 

  32. Y. Song, T.Y. Liu, G.L. Xu, D.Y. Feng, B. Yao, T.Y. Kou, X.X. Liu, and Y. Li: Tri-layered graphite foil for electrochemical capacitors. J. Mater. Chem. A 4, 7683 (2016).

    Article  CAS  Google Scholar 

  33. K. Parvez, Z.S. Wu, R.J. Li, X.J. Liu, R. Graf, X.L. Feng, and K. Mullen: Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083 (2014).

    Article  CAS  Google Scholar 

  34. D.A.C. Brownson, L.J. Munro, D.K. Kampouris, and C.E. Banks: Electrochemistry of graphene: Not such a beneficial electrode material? RSC Adv. 1, 978 (2011).

    Article  CAS  Google Scholar 

  35. Z.Y. Cheng, P. Liu, B. Guo, Y.F. Qiu, P.R. Xu, and H.B. Fan: Surface activation of carbon paper with potassium dichromate lotion and application as a supercapacitor. Appl. Surf. Sci. 349, 833 (2015).

    Article  CAS  Google Scholar 

  36. G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Y. Tong, and Y. Li: Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26, 2676 (2014).

    Article  CAS  Google Scholar 

  37. X. Ye, Q. Zhou, C. Jia, Z. Tang, Z. Wan, and X. Wu: A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles. Electrochim. Acta 206, 155 (2016).

    Article  CAS  Google Scholar 

  38. B. Nagar, D.P. Dubal, L. Pires, A. Merkoci, and P. Gomez-Romero: Design and fabrication of printed paper-based hybrid micro-supercapacitor by using graphene and redox-active electrolyte. Chemsuschem 11, 1849 (2018).

    Article  CAS  Google Scholar 

  39. B. Yao, L. Yuan, X. Xiao, J. Zhang, Y. Qi, J. Zhou, J. Zhou, B. Hu, and W. Chen: Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2, 1071 (2013).

    Article  CAS  Google Scholar 

  40. C. Xu, R.S. Yuan, and X. Wang: Selective reduction of graphene oxide. N. Carbon Mater. 29, 61 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 21373047), Graduate Innovation Program of Jiangsu Province (KYCX18_0080), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yibing Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Zhou, Y. Enhanced capacitive performance of activated carbon paper electrode material. Journal of Materials Research 34, 2472–2481 (2019). https://doi.org/10.1557/jmr.2019.224

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.224

Navigation