Skip to main content

Advertisement

Log in

Pore-graded and conductor- and binder-free FeS2 films deposited by spray pyrolysis for high-performance lithium-ion batteries

  • Energy Conversion and Storage Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Porosity-graded, conductor- and binder-free porous FeS2 films through the entire thickness were deposited by spray pyrolysis. The film layers deposited at 15 versus 10 L/min are grown in different modes. The film layer deposited at 15 L/min showed Frank–van der Merwe layer-like growth mode whereas the one deposited at 10 L/min showed island growth mode. These growth modes lead to the formation of large pores on the electrolyte side and small ones on the substrate side of the film deposited using 15 and 10 L/min, sequentially. The porosity-graded films showed discharge capacities at C/10 of 879 mA h/g and 754 mA h/g for the 5th and 20th cycles, respectively. Such capacity values are superior to the literature findings for FeS2 powders and nongraded films mixed with conductor and binder additions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. R.E. Hummel: Understanding Materials Science: History, Properties, Applications, 2nd ed. (Springer-Verlag New York, LLC., New York, New York, 2004).

    Book  Google Scholar 

  2. T.T. Kodas and M.J. Hampden-Smith: Aerosol Processing of Materials (WILEY-VCH, New York, New York, 1999); pp. 1–15, 492–493, 577.

    Google Scholar 

  3. S. Che, O. Sakurai, K. Shinozaki, and N. Mizutani: Particle structure control through intraparticle reactions by spray pyrolysis. J. Aerosol Sci. 29, 271 (1998).

    Article  CAS  Google Scholar 

  4. Y. Liang, R. Felix, H. Glicksman, and S. Ehrman: Cu–Sn binary metal particle generation by spray pyrolysis. Aerosol Sci. Technol. 51, 430 (2017).

    Article  CAS  Google Scholar 

  5. M. Liu, D.M. Liu, M.L. Zhou, Y. Zhao, X. Gao, and J.X. Liang: Fabrication of YBCO tapes on Ag substrates by the ultrasonic spray pyrolysis method. Supercond. Sci. Technol. 17, 676 (2004).

    Article  CAS  Google Scholar 

  6. A.B.D. Nandiyanto and K. Okuyama: Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Powder Technol. 22, 1 (2011).

    Article  CAS  Google Scholar 

  7. S.P.S. Arya and H.E. Hintermann: Growth of Y–Ba–Cu–O superconducting thin films by ultrasonic spray pyrolysis. Thin Solid Films 193–194 (Part 2), 841 (1990).

    Article  Google Scholar 

  8. R.R. Chamberlin and J.S. Skarman: Chemical spray deposition process for inorganic films. J. Electrochem. Soc. 113, 86 (1966).

    Article  CAS  Google Scholar 

  9. V.M. Nikale, S.S. Shinde, C.H. Bhosale, and K.Y. Rajpure: Physical properties of spray deposited CdTe thin films: PEC performance. J. Semicond. 32, 033001 (2011).

    Article  CAS  Google Scholar 

  10. S.D. Gunjal, Y.B. Khollam, S.R. Jadkar, T. Shripathi, V.G. Sathe, P.N. Shelke, M.G. Takwale, and K.C. Mohite: Spray pyrolysis deposition of p-CdTe films: Structural, optical and electrical properties. Sol. Energy 106, 56 (2014).

    Article  CAS  Google Scholar 

  11. K. Vamsi Krishna, V. Dutta, and K.S.R. Koteswara Rao: Effect of in situ CdCl2 treatment on spray deposited CdTe films: Photoluminescence study. Phys. Status Solidi A 198, 443 (2003).

    Article  CAS  Google Scholar 

  12. S.D. Gunjal, Y.B. Khollam, R.R. Udawant, S.R. Jadkar, P.N. Shelke, J.V. Sali, and K.C. Mohite: Optical and electrical properties of ultrasonic spray pyrolysized p-CdTe films. In Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013 International Conference on (IEEE, New Jersey, 2013); p. 360.

    Google Scholar 

  13. H.B. Serreze, S. Lis, M.R. Squillante, R. Turcotte, M. Talbot, and G. Entine: Spray pyrolysis prepared CdTe solar cells. In Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, Inc., New York, New York, 1981); p. 1068.

    Google Scholar 

  14. P.S. Patil: Versatility of chemical spray pyrolysis technique. Mater. Chem. Phys. 59, 185 (1999).

    Article  CAS  Google Scholar 

  15. D. Pavlopoulos, S. Al-Khatiab, T.W. Button, and J.S. Abell: Effort to produce textured CeO2 and MgO films by the spray pyrolysis technique as buffer layers for coated conductors. J. Phys.: Conf. Ser. 97, 012098 (2008).

    Google Scholar 

  16. S. Al-Khateeb, D. Pavlopoulos, T.W. Button, and J.S. Abell: Pulsed laser deposition of YBa2Cu3O7 superconducting film on MgO templates spray pyrolyzed on hastelloy C276. J. Supercond. Novel Magn. 25, 1823 (2012).

    Article  CAS  Google Scholar 

  17. S. Al-Khateeb, D. Pavlopoulos, T.W. Button, and J.S. Abell: Spray pyrolysis of MgO templates on 321-austenitic stainless steel substrates for YBa2Cu3O7 deposition by PLD. J. Supercond. Novel Magn. 26, 273 (2013).

    Article  CAS  Google Scholar 

  18. S. Al Khateeb, T.W. Button, and J.S. Abell: Spray pyrolysis of MgO templates on Hastelloy C276 and 310-austenitic stainless steel substrates for YBa2Cu3O7 (YBCO) deposition by pulsed laser deposition. Supercond. Sci. Technol. 23, 095001 (2010).

    Article  CAS  Google Scholar 

  19. L. Zhang, L. Zhu, and A.V. Virkar: Nanostructured cathodes for solid oxide fuel cells by a solution spray-coating process. J. Electrochem. Soc. 163, F1358 (2016).

    Article  CAS  Google Scholar 

  20. L.X. Phua, F. Xu, Y.G. Ma, and C.K. Ong: Structure and magnetic characterizations of cobalt ferrite films prepared by spray pyrolysis. Thin Solid Films 517, 5858 (2009).

    Article  CAS  Google Scholar 

  21. L. Vergnières, P. Odier, F. Weiss, C.E. Bruzek, and J.M. Saugrain: Epitaxial thick films by spray pyrolysis for coated conductors. J. Eur. Ceram. Soc. 25, 2951 (2005).

    Article  CAS  Google Scholar 

  22. O. Paschos, P. Choi, H. Efstathiadis, and P. Haldar: Synthesis of platinum nanoparticles by aerosol assisted deposition method. Thin Solid Films 516, 3796 (2008).

    Article  CAS  Google Scholar 

  23. S.E. Skrabalak and K.S. Suslick: Porous MoS2 synthesized by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 127, 9990 (2005).

    Article  CAS  Google Scholar 

  24. W.H. Suh, A.R. Jang, Y.H. Suh, and K.S. Suslick: Porous, hollow, and ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Adv. Mater. 18, 1832 (2006).

    Article  CAS  Google Scholar 

  25. Y.H. Lee, S.H. Im, J-H. Lee, and S.I. Seok: Porous CdS-sensitized electrochemical solar cells. Electrochim. Acta 56, 2087 (2011).

    Article  CAS  Google Scholar 

  26. J.M. Bian, X.M. Li, T.L. Chen, X.D. Gao, and W.D. Yu: Preparation of high quality MgO thin films by ultrasonic spray pyrolysis. Appl. Surf. Sci. 228, 297 (2004).

    Article  CAS  Google Scholar 

  27. D. Perednis and L. Gauckler: Thin film deposition using spray pyrolysis. J. Electroceram. 14, 103 (2005).

    Article  CAS  Google Scholar 

  28. H. Liu, C. Song, Y. Tang, J. Zhang, and J. Zhang: High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. Electrochim. Acta 52, 4532 (2007).

    Article  CAS  Google Scholar 

  29. Y. Jia, L. Xu, P. Ma, K.G. Prashanth, C. Yao, and G. Wang: Microstructure evolution and hot deformation behavior of spray-deposited TiAl alloys. J. Mater. Res. 33, 2844 (2018).

    Article  CAS  Google Scholar 

  30. Y. Liang, H. Tian, J. Repac, S-C. Liou, J. Chen, W. Han, C. Wang, and S. Ehrman: Colloidal spray pyrolysis: A new fabrication technology for nanostructured energy storage materials. Energy Storage Mater. 13, 8 (2018).

    Article  Google Scholar 

  31. H. Tian, Y. Liang, J. Repac, S. Zhang, C. Luo, S-C. Liou, G. Wang, S.H. Ehrman, and W. Han: Rational design of core–shell-structured particles by a one-step and template-free process for high-performance lithium/sodium-ion batteries. J. Phys. Chem. C 122, 22232 (2018).

    Article  CAS  Google Scholar 

  32. A. Gurav, T. Kodas, T. Pluym, and Y. Xiong: Aerosol processing of materials. Aerosol Sci. Technol. 19, 411 (1993).

    Article  CAS  Google Scholar 

  33. Y.C. Kang, S.B. Park, I.W. Lenggoro, and K. Okuyama: Preparation of nonaggregated Y2O3: Eu phosphor particles by spray pyrolysis method. J. Mater. Res. 14, 2611 (1999).

    Article  CAS  Google Scholar 

  34. X. Fu, G. Wu, S. Song, Z. Song, X. Duo, and C. Lin: Preparation and characterization of MgO thin films by a simple nebulized spray pyrolysis technique. Appl. Surf. Sci. 148, 223 (1999).

    Article  CAS  Google Scholar 

  35. O. Stryckmans, T. Segato, and P.H. Duvigneaud: Formation of MgO films by ultrasonic spray pyrolysis from β-diketonate. Thin Solid Films 283, 17 (1996).

    Article  CAS  Google Scholar 

  36. S.Y. Wang, Z.P. Qiao, W. Wang, and Y.T. Qian: XPS studies of nanometer CeO2 thin films deposited by pulse ultrasonic spray pyrolysis. J. Alloys Compd. 305, 121 (2000).

    Article  CAS  Google Scholar 

  37. S. Wang, W. Wang, J. Zuo, and Y. Qian: Study of the Raman spectrum of CeO2 nanometer thin films. Mater. Chem. Phys. 68, 246 (2001).

    Article  CAS  Google Scholar 

  38. S.Y. Wang, W. Wang, Q.C. Liu, M. Zhang, and Y.T. Qian: Preparation and characterization of cerium(IV) oxide thin films by spray prolysis method. Solid State Ionics 133, 211 (2000).

    Article  CAS  Google Scholar 

  39. J.L. Boone, T.P. Van Doren, and A.K. Berry: Deposition of CdTe by spray pyrolysis. Thin Solid Films 87, 259 (1982).

    Article  CAS  Google Scholar 

  40. S. Al Khateeb: Growth and characterisation of textured superconducint tapes. In Metallurgy and Materials (University of Birmingahm, Birmingham, U.K., 2009); pp. 119–133.

    Google Scholar 

  41. D. Pavlopoulos: Spray Pyrolysis for Oxide Buffer Layers for Second Generation Coated Conductor Applications (University of Birmingham City, Birmingham, U.K., 2008).

    Google Scholar 

  42. H.A. Hamedani: Investigation of Deposition Parameters in Ultrasonic Spray Pyrolysis for Fabrication of Solid Oxide Fuel Cell cathode. Mechanical Engineering (Georgia Institute of Technology, Atlanta, Georgia, 2008).

    Google Scholar 

  43. L.K.K. Gan-Moog Chow, T. Danny Xiao, P.R. Strutt, C.W. Strock, R.A. Zatorski, and B. Kear: Nanosize particle coatings made by thermally spraying solution precursor feedstocks City, WO2000000660A1 (2000).

  44. S. Al Khateeb and T.D. Sparks: Spray pyrolysis of conductor- and binder-free porous FeS2 films for high-performance lithium ion batteries. J. Mater. Sci. 45, 4089–4104 (2018).

    Google Scholar 

  45. L. Li, M. Caban-Acevedo, S.N. Girard, and S. Jin: High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Nanoscale 6, 2112 (2014).

    Article  CAS  Google Scholar 

  46. L. Ghadbeigi, J.K. Harada, B.R. Lettiere, and T.D. Sparks: Performance and resource considerations of Li-ion battery electrode materials. Energy Environ. Sci. 8, 1640 (2015).

    Article  CAS  Google Scholar 

  47. C. Wadia, A.P. Alivisatos, and D.M. Kammen: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009).

    Article  CAS  Google Scholar 

  48. J. Cabana, L. Monconduit, D. Larcher, and M.R. Palacín: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170 (2010).

    Article  CAS  Google Scholar 

  49. R. Fong, J.R. Dahn, and C.H.W. Jones: Electrochemistry of pyrite-based cathodes for ambient temperature lithium batteries. J. Electrochem. Soc. 136, 3206 (1989).

    Article  CAS  Google Scholar 

  50. Y. Zhu, X. Fan, L. Suo, C. Luo, T. Gao, and C. Wang: Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 10, 1529 (2016).

    Article  CAS  Google Scholar 

  51. Y.J. Choi, N.W. Kim, K.W. Kim, K.K. Cho, G.B. Cho, H.J. Ahn, J.H. Ahn, K.S. Ryu, and H.B. Gu: Electrochemical properties of nickel-precipitated pyrite as cathode active material for lithium/pyrite cell. J. Alloys Compd. 485, 462 (2009).

    Article  CAS  Google Scholar 

  52. T. Evans, D.M. Piper, S.C. Kim, S.S. Han, V. Bhat, K.H. Oh, and S-H. Lee: Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries. Adv. Mater. 26, 7386 (2014).

    Article  CAS  Google Scholar 

  53. T.A. Yersak, H.A. Macpherson, S.C. Kim, V-D. Le, C.S. Kang, S-B. Son, Y-H. Kim, J.E. Trevey, K.H. Oh, C. Stoldt, and S-H. Lee: Solid state enabled reversible four electron storage. Adv. Energy Mater. 3, 120 (2013).

    Article  CAS  Google Scholar 

  54. X. Wen, X. Wei, L. Yang, and P.K. Shen: Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. J. Mater. Chem. A 3, 2090 (2015).

    Article  CAS  Google Scholar 

  55. T.S. Yoder, M. Tussing, J.E. Cloud, and Y. Yang: Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries. J. Power Sources 274, 685 (2015).

    Article  CAS  Google Scholar 

  56. Z. Hu, K. Zhang, Z. Zhu, Z. Tao, and J. Chen: FeS2 microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. J. Mater. Chem. A 3, 12898 (2015).

    Article  CAS  Google Scholar 

  57. L. Liu, Z. Yuan, C. Qiu, and J. Liu: A novel FeS2/CNT micro-spherical cathode material with enhanced electrochemical characteristics for lithium-ion batteries. Solid State Ionics 241, 25 (2013).

    Article  CAS  Google Scholar 

  58. S-B. Son, T.A. Yersak, D.M. Piper, S.C. Kim, C.S. Kang, J.S. Cho, S-S. Suh, Y-U. Kim, K.H. Oh, and S-H. Lee: A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte. Adv. Energy Mater. 4, 1300961 (2014).

    Article  CAS  Google Scholar 

  59. S. Cheng, J. Wang, H. Lin, W. Li, Y. Qiu, Z. Zheng, X. Zhao, and Y. Zhang: Improved cycling stability of the capping agent-free nanocrystalline FeS2 cathode via an upper cut-off voltage control. J. Mater. Sci. 52, 2442 (2017).

    Article  CAS  Google Scholar 

  60. O.O. Kapitanova, K.V. Mironovich, D.E. Melezhenko, V.V. Rokosovina, S.Y. Ryzhenkova, S.V. Korneev, T.B. Shatalova, X. Xu, F.S. Napolskiy, D.M. Itkis, and V.A. Krivchenko: Modified carbon nanotubes for water-based cathode slurries for lithium–sulfur batteries. J. Mater. Res. 34, 634 (2019).

    Article  CAS  Google Scholar 

  61. H. Siyu, L. Xinyu, L. QingYu, and C. Jun: Pyrite film synthesized for lithium-ion batteries. J. Alloys Compd. 472, L9 (2009).

    Article  CAS  Google Scholar 

  62. V. Yufit, K. Freedman, M. Nathan, L. Burstein, D. Golodnitsky, and E. Peled: Thin-film iron sulfide cathodes for lithium and Li-ion/polymer electrolyte microbatteries. Electrochim. Acta 50, 417 (2004).

    Article  CAS  Google Scholar 

  63. X. Chen, Z. Wang, X. Wang, J. Wan, J. Liu, and Y. Qian: Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties. Inorg. Chem. 44, 951 (2005).

    Article  CAS  Google Scholar 

  64. J. Liu, Y. Wen, Y. Wang, P.A. van Aken, J. Maier, and Y. Yu: Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 26, 6025 (2014).

    Article  CAS  Google Scholar 

  65. J-W. Choi, G. Cheruvally, H-J. Ahn, K-W. Kim, and J-H. Ahn: Electrochemical characteristics of room temperature Li/FeS2 batteries with natural pyrite cathode. J. Power Sources 163, 158 (2006).

    Article  CAS  Google Scholar 

  66. Z. Xie, T. Navessin, K. Shi, R. Chow, Q. Wang, D. Song, B. Andreaus, M. Eikerling, Z. Liu, and S. Holdcroft: Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: II. Experimental study of the effect of nafion distribution. J. Electrochem. Soc. 152, A1171 (2005).

    Article  CAS  Google Scholar 

  67. N.T. Hart, N.P. Brandon, M.J. Day, and N. Lapeña-Rey: Functionally graded composite cathodes for solid oxide fuel cells. J. Power Sources 106, 42 (2002).

    Article  CAS  Google Scholar 

  68. C. Xia, W. Rauch, W. Wellborn, and M. Liu: Functionally graded cathodes for honeycomb solid oxide fuel cells. Electrochem. Solid-State Lett. 5, A217 (2002).

    Article  CAS  Google Scholar 

  69. Y. Liu, C. Compson, and M. Liu: Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 138, 194 (2004).

    Article  CAS  Google Scholar 

  70. L. Liu, P. Guan, and C. Liu: Experimental and simulation investigations of porosity graded cathodes in mitigating battery degradation of high voltage lithium-ion batteries. J. Electrochem. Soc. 164, A3163 (2017).

    Article  CAS  Google Scholar 

  71. Q. Wang, M. Eikerling, D. Song, Z. Liu, T. Navessin, Z. Xie, and S. Holdcroft: Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: I. Theoretical modeling. J. Electrochem. Soc. 151, A950 (2004).

    Article  CAS  Google Scholar 

  72. G. Inoue and M. Kawase: Numerical and experimental evaluation of the relationship between porous electrode structure and effective conductivity of ions and electrons in lithium-ion batteries. J. Power Sources 342, 476 (2017).

    Article  CAS  Google Scholar 

  73. S.R. Younesi, S. Urbonaite, F. Björefors, and K. Edström: Influence of the cathode porosity on the discharge performance of the lithium–oxygen battery. J. Power Sources 196, 9835 (2011).

    Article  CAS  Google Scholar 

  74. A. Vu, Y. Qian, and A. Stein: Porous electrode materials for lithium-ion batteries—How to prepare them and what makes them special. Adv. Energy Mater. 2, 1056 (2012).

    Article  CAS  Google Scholar 

  75. C. Liu and L. Liu: Optimal design of Li-ion batteries through multi-physics modeling and multi-objective optimization. J. Electrochem. Soc. 164, E3254 (2017).

    Article  CAS  Google Scholar 

  76. W. Tiedemann and J. Newman: Maximum effective capacity in an ohmically limited porous electrode. J. Electrochem. Soc. 122, 1482 (1975).

    Article  CAS  Google Scholar 

  77. J. Newman: Optimization of porosity and thickness of a battery electrode by means of a reaction-zone model. J. Electrochem. Soc. 142, 97 (1995).

    Article  CAS  Google Scholar 

  78. V. Srinivasan and J. Newman: Design and optimization of a natural graphite/iron phosphate lithium-ion cell. J. Electrochem. Soc. 151, A1530 (2004).

    Article  CAS  Google Scholar 

  79. Z.Y. Jiang, Z.G. Qu, L. Zhou, and W.Q. Tao: A microscopic investigation of ion and electron transport in lithium-ion battery porous electrodes using the lattice Boltzmann method. Appl. Energy 194, 530 (2017).

    Article  CAS  Google Scholar 

  80. G. Sikha, B.N. Popov, and R.E. White: Effect of porosity on the capacity fade of a lithium-ion battery. J. Electrochem. Soc. 151, A1104 (2004).

    Article  CAS  Google Scholar 

  81. S. De, P.W.C. Northrop, V. Ramadesigan, and V.R. Subramanian: Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density. J. Power Sources 227, 161 (2013).

    Article  CAS  Google Scholar 

  82. L. Liu, J. Park, X. Lin, A.M. Sastry, and W. Lu: A thermal-electrochemical model that gives spatial-dependent growth of solid electrolyte interphase in a Li-ion battery. J. Power Sources 268, 482 (2014).

    Article  CAS  Google Scholar 

  83. B. Suthar, P.W.C. Northrop, D. Rife, and V.R. Subramanian: Effect of porosity, thickness and tortuosity on capacity fade of anode. J. Electrochem. Soc. 162, A1708 (2015).

    Article  CAS  Google Scholar 

  84. P. Novák, W. Scheifele, M. Winter, and O. Haas: Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries. J. Power Sources 68, 267 (1997).

    Article  Google Scholar 

  85. H. Zhang, X. Yu, and P.V. Braun: Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277 (2011).

    Article  CAS  Google Scholar 

  86. H.A. Hamedani, K-H. Dahmen, D. Li, H. Peydaye-Saheli, H. Garmestani, and M. Khaleel: Fabrication of gradient porous LSM cathode by optimizing deposition parameters in ultrasonic spray pyrolysis. Mater. Sci. Eng., B 153, 1 (2008).

    Article  CAS  Google Scholar 

  87. F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, V. Volkov, D. Su, B. Key, M.S. Whittingham, C.P. Grey, G.G. Amatucci, Y. Zhu, and J. Graetz: Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828 (2011).

    Article  CAS  Google Scholar 

  88. Y. Ma and S.H. Garofalini: Atomistic insights into the conversion reaction in iron fluoride: A dynamically adaptive force field approach. J. Am. Chem. Soc. 134, 8205 (2012).

    Article  CAS  Google Scholar 

  89. S. Al-khateeb, A.G. Lind, R. Santos-Ortiz, N.D. Shepherd, and K.S. Jones: Cycling performance and morphological evolution of pulsed laser-deposited FeF2 thin film cathodes for Li-ion batteries. J. Mater. Sci. 50, 5174 (2015).

    Article  CAS  Google Scholar 

  90. B.W. Mwakikunga: Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since michael faraday. Crit. Rev. Solid State Mater. Sci. 39, 46 (2014).

    Article  CAS  Google Scholar 

  91. J. Ho Bang, Y.T. Didenko, R.J. Helmich, and K.S. Suslick: Nanostructured Materials through Ultrasonic Spray Pyrolysis, Vol. 7 (Sigma Aldrich, Material Matters, St. Louis, Missouri, 2012); Number 2, 15–20.

    Google Scholar 

  92. Y. Dai and V. Srinivasan: On graded electrode porosity as a design tool for improving the energy density of batteries. J. Electrochem. Soc. 163, A406 (2016).

    Article  CAS  Google Scholar 

  93. J. Milan: Synthesis of high-Tc superconducting films by deposition from an aerosol. Supercond. Sci. Technol. 8, 67 (1995).

    Article  Google Scholar 

  94. K.L. Chopra: Thin Film Phenomena (McGraw-Hill, New York, New York, 1969); p. 224.

    Google Scholar 

  95. M.A. Herman, W. Richter, and H. Sitter: Epitaxy: Physical Principles and Technical Implementation, 1st ed. (Springer, Berlin, Germany, 2004); pp. 6–10.

    Book  Google Scholar 

  96. C.V. Thompson, J. Floro, and H.I. Smith: Epitaxial grain growth in thin metal films. J. Appl. Phys. 67, 4099 (1990).

    Article  CAS  Google Scholar 

  97. H.Q. Ta, D.J. Perello, D.L. Duong, G.H. Han, S. Gorantla, V.L. Nguyen, A. Bachmatiuk, S.V. Rotkin, Y.H. Lee, and M.H. Rümmeli: Stranski–Krastanov and Volmer–Weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 16, 6403 (2016).

    Article  CAS  Google Scholar 

  98. D.J. Eaglesham and M. Cerullo: Dislocation-free Stranski–Krastanow growth of Ge on Si(100). Phys. Rev. Lett. 64, 1943 (1990).

    Article  CAS  Google Scholar 

  99. P. Shrestha, D. Gu, N. Tran, K. Tapily, H. Baumgart, and G. Namkoong: Investigation of Volmer–Weber growth during the nucleation phase of ALD platinum thin films and template based platinum nanotubes. ECS Trans. 33, 127 (2010).

    Article  CAS  Google Scholar 

  100. N. Kaiser: Review of the fundamentals of thin-film growth. Appl. Opt. 41, 3053 (2002).

    Article  CAS  Google Scholar 

  101. C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).

    Article  CAS  Google Scholar 

  102. S. Nakamura and A. Yamamoto: Electrodeposition of pyrite(FeS2) thin films for photovoltaic cells. Sol. Energy Mater. Sol. Cells 65, 79 (2001).

    Article  CAS  Google Scholar 

  103. A. Yamamoto, M. Nakamura, A. Seki, E.L. Li, A. Hashimoto, and S. Nakamura: Pyrite (FeS2) thin films prepared by spray method using FeSO4 and (NH4)2Sx. Sol. Energy Mater. Sol. Cells 75, 451 (2003).

    Article  CAS  Google Scholar 

  104. A.K. Raturi, S. Waita, B. Aduda, and T. Nyangonda: Photoactive iron pyrite films for photoelectrochemical (PEC) cells. Renewable Energy 20, 37 (2000).

    Article  CAS  Google Scholar 

  105. Z. Liu, T. Lu, T. Song, X-Y. Yu, X.W. Lou, and U. Paik: Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10, 1576 (2017).

    Article  Google Scholar 

  106. Y-X. Wang, J. Yang, S-L. Chou, H.K. Liu, W-x. Zhang, D. Zhao, and S.X. Dou: Uniform yolk–shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nat. Commun. 6, 8689 (2015).

    Article  CAS  Google Scholar 

  107. M. Sina, K.W. Nam, D. Su, N. Pereira, X.Q. Yang, G.G. Amatucci, and F. Cosandey: Structural phase transformation and Fe valence evolution in FeOxF2−x/C nanocomposite electrodes during lithiation and de-lithiation processes. J. Mater. Chem. A 1, 11629 (2013).

    Article  CAS  Google Scholar 

  108. L.A. Montoro and J.M. Rosolen: Gelatin/DMSO: A new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid State Ionics 159, 233 (2003).

    Article  CAS  Google Scholar 

  109. S.A. Khateeb, A.G. Lind, R. Santos-Ortiz, N.D. Shepherd, and K.S. Jones: Effects of steel cell components on overall capacity of pulsed laser deposited FeF2 thin film lithium ion batteries. J. Electrochem. Soc. 162, A1667 (2015).

    Article  CAS  Google Scholar 

  110. S. Al-khateeb: The suitability of selected austenitic stainless steels and hastelloy C276 alloys as substrates for thin film deposition using spray pyrolysis. Int. J. Mater. Res. 104, 301 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been conducted during the sabbatical leave granted to Dr. Shadi Al Khateeb from Al-Balqa Applied University (BAU) during the academic year 2017–2018. The authors would like to thank the Arab Fund Fellowship Program–Kuwait and USTAR UTAG program for their financial support and equipment during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadi Al Khateeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Khateeb, S., Sparks, T.D. Pore-graded and conductor- and binder-free FeS2 films deposited by spray pyrolysis for high-performance lithium-ion batteries. Journal of Materials Research 34, 2456–2471 (2019). https://doi.org/10.1557/jmr.2019.208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.208

Navigation