Abstract
Porosity-graded, conductor- and binder-free porous FeS2 films through the entire thickness were deposited by spray pyrolysis. The film layers deposited at 15 versus 10 L/min are grown in different modes. The film layer deposited at 15 L/min showed Frank–van der Merwe layer-like growth mode whereas the one deposited at 10 L/min showed island growth mode. These growth modes lead to the formation of large pores on the electrolyte side and small ones on the substrate side of the film deposited using 15 and 10 L/min, sequentially. The porosity-graded films showed discharge capacities at C/10 of 879 mA h/g and 754 mA h/g for the 5th and 20th cycles, respectively. Such capacity values are superior to the literature findings for FeS2 powders and nongraded films mixed with conductor and binder additions.
Similar content being viewed by others
References
R.E. Hummel: Understanding Materials Science: History, Properties, Applications, 2nd ed. (Springer-Verlag New York, LLC., New York, New York, 2004).
T.T. Kodas and M.J. Hampden-Smith: Aerosol Processing of Materials (WILEY-VCH, New York, New York, 1999); pp. 1–15, 492–493, 577.
S. Che, O. Sakurai, K. Shinozaki, and N. Mizutani: Particle structure control through intraparticle reactions by spray pyrolysis. J. Aerosol Sci. 29, 271 (1998).
Y. Liang, R. Felix, H. Glicksman, and S. Ehrman: Cu–Sn binary metal particle generation by spray pyrolysis. Aerosol Sci. Technol. 51, 430 (2017).
M. Liu, D.M. Liu, M.L. Zhou, Y. Zhao, X. Gao, and J.X. Liang: Fabrication of YBCO tapes on Ag substrates by the ultrasonic spray pyrolysis method. Supercond. Sci. Technol. 17, 676 (2004).
A.B.D. Nandiyanto and K. Okuyama: Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Adv. Powder Technol. 22, 1 (2011).
S.P.S. Arya and H.E. Hintermann: Growth of Y–Ba–Cu–O superconducting thin films by ultrasonic spray pyrolysis. Thin Solid Films 193–194 (Part 2), 841 (1990).
R.R. Chamberlin and J.S. Skarman: Chemical spray deposition process for inorganic films. J. Electrochem. Soc. 113, 86 (1966).
V.M. Nikale, S.S. Shinde, C.H. Bhosale, and K.Y. Rajpure: Physical properties of spray deposited CdTe thin films: PEC performance. J. Semicond. 32, 033001 (2011).
S.D. Gunjal, Y.B. Khollam, S.R. Jadkar, T. Shripathi, V.G. Sathe, P.N. Shelke, M.G. Takwale, and K.C. Mohite: Spray pyrolysis deposition of p-CdTe films: Structural, optical and electrical properties. Sol. Energy 106, 56 (2014).
K. Vamsi Krishna, V. Dutta, and K.S.R. Koteswara Rao: Effect of in situ CdCl2 treatment on spray deposited CdTe films: Photoluminescence study. Phys. Status Solidi A 198, 443 (2003).
S.D. Gunjal, Y.B. Khollam, R.R. Udawant, S.R. Jadkar, P.N. Shelke, J.V. Sali, and K.C. Mohite: Optical and electrical properties of ultrasonic spray pyrolysized p-CdTe films. In Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), 2013 International Conference on (IEEE, New Jersey, 2013); p. 360.
H.B. Serreze, S. Lis, M.R. Squillante, R. Turcotte, M. Talbot, and G. Entine: Spray pyrolysis prepared CdTe solar cells. In Photovoltaic Specialists Conference (Institute of Electrical and Electronics Engineers, Inc., New York, New York, 1981); p. 1068.
P.S. Patil: Versatility of chemical spray pyrolysis technique. Mater. Chem. Phys. 59, 185 (1999).
D. Pavlopoulos, S. Al-Khatiab, T.W. Button, and J.S. Abell: Effort to produce textured CeO2 and MgO films by the spray pyrolysis technique as buffer layers for coated conductors. J. Phys.: Conf. Ser. 97, 012098 (2008).
S. Al-Khateeb, D. Pavlopoulos, T.W. Button, and J.S. Abell: Pulsed laser deposition of YBa2Cu3O7 superconducting film on MgO templates spray pyrolyzed on hastelloy C276. J. Supercond. Novel Magn. 25, 1823 (2012).
S. Al-Khateeb, D. Pavlopoulos, T.W. Button, and J.S. Abell: Spray pyrolysis of MgO templates on 321-austenitic stainless steel substrates for YBa2Cu3O7 deposition by PLD. J. Supercond. Novel Magn. 26, 273 (2013).
S. Al Khateeb, T.W. Button, and J.S. Abell: Spray pyrolysis of MgO templates on Hastelloy C276 and 310-austenitic stainless steel substrates for YBa2Cu3O7 (YBCO) deposition by pulsed laser deposition. Supercond. Sci. Technol. 23, 095001 (2010).
L. Zhang, L. Zhu, and A.V. Virkar: Nanostructured cathodes for solid oxide fuel cells by a solution spray-coating process. J. Electrochem. Soc. 163, F1358 (2016).
L.X. Phua, F. Xu, Y.G. Ma, and C.K. Ong: Structure and magnetic characterizations of cobalt ferrite films prepared by spray pyrolysis. Thin Solid Films 517, 5858 (2009).
L. Vergnières, P. Odier, F. Weiss, C.E. Bruzek, and J.M. Saugrain: Epitaxial thick films by spray pyrolysis for coated conductors. J. Eur. Ceram. Soc. 25, 2951 (2005).
O. Paschos, P. Choi, H. Efstathiadis, and P. Haldar: Synthesis of platinum nanoparticles by aerosol assisted deposition method. Thin Solid Films 516, 3796 (2008).
S.E. Skrabalak and K.S. Suslick: Porous MoS2 synthesized by ultrasonic spray pyrolysis. J. Am. Chem. Soc. 127, 9990 (2005).
W.H. Suh, A.R. Jang, Y.H. Suh, and K.S. Suslick: Porous, hollow, and ball-in-ball metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Adv. Mater. 18, 1832 (2006).
Y.H. Lee, S.H. Im, J-H. Lee, and S.I. Seok: Porous CdS-sensitized electrochemical solar cells. Electrochim. Acta 56, 2087 (2011).
J.M. Bian, X.M. Li, T.L. Chen, X.D. Gao, and W.D. Yu: Preparation of high quality MgO thin films by ultrasonic spray pyrolysis. Appl. Surf. Sci. 228, 297 (2004).
D. Perednis and L. Gauckler: Thin film deposition using spray pyrolysis. J. Electroceram. 14, 103 (2005).
H. Liu, C. Song, Y. Tang, J. Zhang, and J. Zhang: High-surface-area CoTMPP/C synthesized by ultrasonic spray pyrolysis for PEM fuel cell electrocatalysts. Electrochim. Acta 52, 4532 (2007).
Y. Jia, L. Xu, P. Ma, K.G. Prashanth, C. Yao, and G. Wang: Microstructure evolution and hot deformation behavior of spray-deposited TiAl alloys. J. Mater. Res. 33, 2844 (2018).
Y. Liang, H. Tian, J. Repac, S-C. Liou, J. Chen, W. Han, C. Wang, and S. Ehrman: Colloidal spray pyrolysis: A new fabrication technology for nanostructured energy storage materials. Energy Storage Mater. 13, 8 (2018).
H. Tian, Y. Liang, J. Repac, S. Zhang, C. Luo, S-C. Liou, G. Wang, S.H. Ehrman, and W. Han: Rational design of core–shell-structured particles by a one-step and template-free process for high-performance lithium/sodium-ion batteries. J. Phys. Chem. C 122, 22232 (2018).
A. Gurav, T. Kodas, T. Pluym, and Y. Xiong: Aerosol processing of materials. Aerosol Sci. Technol. 19, 411 (1993).
Y.C. Kang, S.B. Park, I.W. Lenggoro, and K. Okuyama: Preparation of nonaggregated Y2O3: Eu phosphor particles by spray pyrolysis method. J. Mater. Res. 14, 2611 (1999).
X. Fu, G. Wu, S. Song, Z. Song, X. Duo, and C. Lin: Preparation and characterization of MgO thin films by a simple nebulized spray pyrolysis technique. Appl. Surf. Sci. 148, 223 (1999).
O. Stryckmans, T. Segato, and P.H. Duvigneaud: Formation of MgO films by ultrasonic spray pyrolysis from β-diketonate. Thin Solid Films 283, 17 (1996).
S.Y. Wang, Z.P. Qiao, W. Wang, and Y.T. Qian: XPS studies of nanometer CeO2 thin films deposited by pulse ultrasonic spray pyrolysis. J. Alloys Compd. 305, 121 (2000).
S. Wang, W. Wang, J. Zuo, and Y. Qian: Study of the Raman spectrum of CeO2 nanometer thin films. Mater. Chem. Phys. 68, 246 (2001).
S.Y. Wang, W. Wang, Q.C. Liu, M. Zhang, and Y.T. Qian: Preparation and characterization of cerium(IV) oxide thin films by spray prolysis method. Solid State Ionics 133, 211 (2000).
J.L. Boone, T.P. Van Doren, and A.K. Berry: Deposition of CdTe by spray pyrolysis. Thin Solid Films 87, 259 (1982).
S. Al Khateeb: Growth and characterisation of textured superconducint tapes. In Metallurgy and Materials (University of Birmingahm, Birmingham, U.K., 2009); pp. 119–133.
D. Pavlopoulos: Spray Pyrolysis for Oxide Buffer Layers for Second Generation Coated Conductor Applications (University of Birmingham City, Birmingham, U.K., 2008).
H.A. Hamedani: Investigation of Deposition Parameters in Ultrasonic Spray Pyrolysis for Fabrication of Solid Oxide Fuel Cell cathode. Mechanical Engineering (Georgia Institute of Technology, Atlanta, Georgia, 2008).
L.K.K. Gan-Moog Chow, T. Danny Xiao, P.R. Strutt, C.W. Strock, R.A. Zatorski, and B. Kear: Nanosize particle coatings made by thermally spraying solution precursor feedstocks City, WO2000000660A1 (2000).
S. Al Khateeb and T.D. Sparks: Spray pyrolysis of conductor- and binder-free porous FeS2 films for high-performance lithium ion batteries. J. Mater. Sci. 45, 4089–4104 (2018).
L. Li, M. Caban-Acevedo, S.N. Girard, and S. Jin: High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Nanoscale 6, 2112 (2014).
L. Ghadbeigi, J.K. Harada, B.R. Lettiere, and T.D. Sparks: Performance and resource considerations of Li-ion battery electrode materials. Energy Environ. Sci. 8, 1640 (2015).
C. Wadia, A.P. Alivisatos, and D.M. Kammen: Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009).
J. Cabana, L. Monconduit, D. Larcher, and M.R. Palacín: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170 (2010).
R. Fong, J.R. Dahn, and C.H.W. Jones: Electrochemistry of pyrite-based cathodes for ambient temperature lithium batteries. J. Electrochem. Soc. 136, 3206 (1989).
Y. Zhu, X. Fan, L. Suo, C. Luo, T. Gao, and C. Wang: Electrospun FeS2@carbon fiber electrode as a high energy density cathode for rechargeable lithium batteries. ACS Nano 10, 1529 (2016).
Y.J. Choi, N.W. Kim, K.W. Kim, K.K. Cho, G.B. Cho, H.J. Ahn, J.H. Ahn, K.S. Ryu, and H.B. Gu: Electrochemical properties of nickel-precipitated pyrite as cathode active material for lithium/pyrite cell. J. Alloys Compd. 485, 462 (2009).
T. Evans, D.M. Piper, S.C. Kim, S.S. Han, V. Bhat, K.H. Oh, and S-H. Lee: Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries. Adv. Mater. 26, 7386 (2014).
T.A. Yersak, H.A. Macpherson, S.C. Kim, V-D. Le, C.S. Kang, S-B. Son, Y-H. Kim, J.E. Trevey, K.H. Oh, C. Stoldt, and S-H. Lee: Solid state enabled reversible four electron storage. Adv. Energy Mater. 3, 120 (2013).
X. Wen, X. Wei, L. Yang, and P.K. Shen: Self-assembled FeS2 cubes anchored on reduced graphene oxide as an anode material for lithium ion batteries. J. Mater. Chem. A 3, 2090 (2015).
T.S. Yoder, M. Tussing, J.E. Cloud, and Y. Yang: Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries. J. Power Sources 274, 685 (2015).
Z. Hu, K. Zhang, Z. Zhu, Z. Tao, and J. Chen: FeS2 microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. J. Mater. Chem. A 3, 12898 (2015).
L. Liu, Z. Yuan, C. Qiu, and J. Liu: A novel FeS2/CNT micro-spherical cathode material with enhanced electrochemical characteristics for lithium-ion batteries. Solid State Ionics 241, 25 (2013).
S-B. Son, T.A. Yersak, D.M. Piper, S.C. Kim, C.S. Kang, J.S. Cho, S-S. Suh, Y-U. Kim, K.H. Oh, and S-H. Lee: A stabilized PAN-FeS2 cathode with an EC/DEC liquid electrolyte. Adv. Energy Mater. 4, 1300961 (2014).
S. Cheng, J. Wang, H. Lin, W. Li, Y. Qiu, Z. Zheng, X. Zhao, and Y. Zhang: Improved cycling stability of the capping agent-free nanocrystalline FeS2 cathode via an upper cut-off voltage control. J. Mater. Sci. 52, 2442 (2017).
O.O. Kapitanova, K.V. Mironovich, D.E. Melezhenko, V.V. Rokosovina, S.Y. Ryzhenkova, S.V. Korneev, T.B. Shatalova, X. Xu, F.S. Napolskiy, D.M. Itkis, and V.A. Krivchenko: Modified carbon nanotubes for water-based cathode slurries for lithium–sulfur batteries. J. Mater. Res. 34, 634 (2019).
H. Siyu, L. Xinyu, L. QingYu, and C. Jun: Pyrite film synthesized for lithium-ion batteries. J. Alloys Compd. 472, L9 (2009).
V. Yufit, K. Freedman, M. Nathan, L. Burstein, D. Golodnitsky, and E. Peled: Thin-film iron sulfide cathodes for lithium and Li-ion/polymer electrolyte microbatteries. Electrochim. Acta 50, 417 (2004).
X. Chen, Z. Wang, X. Wang, J. Wan, J. Liu, and Y. Qian: Single-source approach to cubic FeS2 crystallites and their optical and electrochemical properties. Inorg. Chem. 44, 951 (2005).
J. Liu, Y. Wen, Y. Wang, P.A. van Aken, J. Maier, and Y. Yu: Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Adv. Mater. 26, 6025 (2014).
J-W. Choi, G. Cheruvally, H-J. Ahn, K-W. Kim, and J-H. Ahn: Electrochemical characteristics of room temperature Li/FeS2 batteries with natural pyrite cathode. J. Power Sources 163, 158 (2006).
Z. Xie, T. Navessin, K. Shi, R. Chow, Q. Wang, D. Song, B. Andreaus, M. Eikerling, Z. Liu, and S. Holdcroft: Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: II. Experimental study of the effect of nafion distribution. J. Electrochem. Soc. 152, A1171 (2005).
N.T. Hart, N.P. Brandon, M.J. Day, and N. Lapeña-Rey: Functionally graded composite cathodes for solid oxide fuel cells. J. Power Sources 106, 42 (2002).
C. Xia, W. Rauch, W. Wellborn, and M. Liu: Functionally graded cathodes for honeycomb solid oxide fuel cells. Electrochem. Solid-State Lett. 5, A217 (2002).
Y. Liu, C. Compson, and M. Liu: Nanostructured and functionally graded cathodes for intermediate temperature solid oxide fuel cells. J. Power Sources 138, 194 (2004).
L. Liu, P. Guan, and C. Liu: Experimental and simulation investigations of porosity graded cathodes in mitigating battery degradation of high voltage lithium-ion batteries. J. Electrochem. Soc. 164, A3163 (2017).
Q. Wang, M. Eikerling, D. Song, Z. Liu, T. Navessin, Z. Xie, and S. Holdcroft: Functionally graded cathode catalyst layers for polymer electrolyte fuel cells: I. Theoretical modeling. J. Electrochem. Soc. 151, A950 (2004).
G. Inoue and M. Kawase: Numerical and experimental evaluation of the relationship between porous electrode structure and effective conductivity of ions and electrons in lithium-ion batteries. J. Power Sources 342, 476 (2017).
S.R. Younesi, S. Urbonaite, F. Björefors, and K. Edström: Influence of the cathode porosity on the discharge performance of the lithium–oxygen battery. J. Power Sources 196, 9835 (2011).
A. Vu, Y. Qian, and A. Stein: Porous electrode materials for lithium-ion batteries—How to prepare them and what makes them special. Adv. Energy Mater. 2, 1056 (2012).
C. Liu and L. Liu: Optimal design of Li-ion batteries through multi-physics modeling and multi-objective optimization. J. Electrochem. Soc. 164, E3254 (2017).
W. Tiedemann and J. Newman: Maximum effective capacity in an ohmically limited porous electrode. J. Electrochem. Soc. 122, 1482 (1975).
J. Newman: Optimization of porosity and thickness of a battery electrode by means of a reaction-zone model. J. Electrochem. Soc. 142, 97 (1995).
V. Srinivasan and J. Newman: Design and optimization of a natural graphite/iron phosphate lithium-ion cell. J. Electrochem. Soc. 151, A1530 (2004).
Z.Y. Jiang, Z.G. Qu, L. Zhou, and W.Q. Tao: A microscopic investigation of ion and electron transport in lithium-ion battery porous electrodes using the lattice Boltzmann method. Appl. Energy 194, 530 (2017).
G. Sikha, B.N. Popov, and R.E. White: Effect of porosity on the capacity fade of a lithium-ion battery. J. Electrochem. Soc. 151, A1104 (2004).
S. De, P.W.C. Northrop, V. Ramadesigan, and V.R. Subramanian: Model-based simultaneous optimization of multiple design parameters for lithium-ion batteries for maximization of energy density. J. Power Sources 227, 161 (2013).
L. Liu, J. Park, X. Lin, A.M. Sastry, and W. Lu: A thermal-electrochemical model that gives spatial-dependent growth of solid electrolyte interphase in a Li-ion battery. J. Power Sources 268, 482 (2014).
B. Suthar, P.W.C. Northrop, D. Rife, and V.R. Subramanian: Effect of porosity, thickness and tortuosity on capacity fade of anode. J. Electrochem. Soc. 162, A1708 (2015).
P. Novák, W. Scheifele, M. Winter, and O. Haas: Graphite electrodes with tailored porosity for rechargeable ion-transfer batteries. J. Power Sources 68, 267 (1997).
H. Zhang, X. Yu, and P.V. Braun: Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 6, 277 (2011).
H.A. Hamedani, K-H. Dahmen, D. Li, H. Peydaye-Saheli, H. Garmestani, and M. Khaleel: Fabrication of gradient porous LSM cathode by optimizing deposition parameters in ultrasonic spray pyrolysis. Mater. Sci. Eng., B 153, 1 (2008).
F. Wang, R. Robert, N.A. Chernova, N. Pereira, F. Omenya, F. Badway, X. Hua, M. Ruotolo, R. Zhang, L. Wu, V. Volkov, D. Su, B. Key, M.S. Whittingham, C.P. Grey, G.G. Amatucci, Y. Zhu, and J. Graetz: Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133, 18828 (2011).
Y. Ma and S.H. Garofalini: Atomistic insights into the conversion reaction in iron fluoride: A dynamically adaptive force field approach. J. Am. Chem. Soc. 134, 8205 (2012).
S. Al-khateeb, A.G. Lind, R. Santos-Ortiz, N.D. Shepherd, and K.S. Jones: Cycling performance and morphological evolution of pulsed laser-deposited FeF2 thin film cathodes for Li-ion batteries. J. Mater. Sci. 50, 5174 (2015).
B.W. Mwakikunga: Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since michael faraday. Crit. Rev. Solid State Mater. Sci. 39, 46 (2014).
J. Ho Bang, Y.T. Didenko, R.J. Helmich, and K.S. Suslick: Nanostructured Materials through Ultrasonic Spray Pyrolysis, Vol. 7 (Sigma Aldrich, Material Matters, St. Louis, Missouri, 2012); Number 2, 15–20.
Y. Dai and V. Srinivasan: On graded electrode porosity as a design tool for improving the energy density of batteries. J. Electrochem. Soc. 163, A406 (2016).
J. Milan: Synthesis of high-Tc superconducting films by deposition from an aerosol. Supercond. Sci. Technol. 8, 67 (1995).
K.L. Chopra: Thin Film Phenomena (McGraw-Hill, New York, New York, 1969); p. 224.
M.A. Herman, W. Richter, and H. Sitter: Epitaxy: Physical Principles and Technical Implementation, 1st ed. (Springer, Berlin, Germany, 2004); pp. 6–10.
C.V. Thompson, J. Floro, and H.I. Smith: Epitaxial grain growth in thin metal films. J. Appl. Phys. 67, 4099 (1990).
H.Q. Ta, D.J. Perello, D.L. Duong, G.H. Han, S. Gorantla, V.L. Nguyen, A. Bachmatiuk, S.V. Rotkin, Y.H. Lee, and M.H. Rümmeli: Stranski–Krastanov and Volmer–Weber CVD growth regimes to control the stacking order in bilayer graphene. Nano Lett. 16, 6403 (2016).
D.J. Eaglesham and M. Cerullo: Dislocation-free Stranski–Krastanow growth of Ge on Si(100). Phys. Rev. Lett. 64, 1943 (1990).
P. Shrestha, D. Gu, N. Tran, K. Tapily, H. Baumgart, and G. Namkoong: Investigation of Volmer–Weber growth during the nucleation phase of ALD platinum thin films and template based platinum nanotubes. ECS Trans. 33, 127 (2010).
N. Kaiser: Review of the fundamentals of thin-film growth. Appl. Opt. 41, 3053 (2002).
C.A. Schneider, W.S. Rasband, and K.W. Eliceiri: NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).
S. Nakamura and A. Yamamoto: Electrodeposition of pyrite(FeS2) thin films for photovoltaic cells. Sol. Energy Mater. Sol. Cells 65, 79 (2001).
A. Yamamoto, M. Nakamura, A. Seki, E.L. Li, A. Hashimoto, and S. Nakamura: Pyrite (FeS2) thin films prepared by spray method using FeSO4 and (NH4)2Sx. Sol. Energy Mater. Sol. Cells 75, 451 (2003).
A.K. Raturi, S. Waita, B. Aduda, and T. Nyangonda: Photoactive iron pyrite films for photoelectrochemical (PEC) cells. Renewable Energy 20, 37 (2000).
Z. Liu, T. Lu, T. Song, X-Y. Yu, X.W. Lou, and U. Paik: Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 10, 1576 (2017).
Y-X. Wang, J. Yang, S-L. Chou, H.K. Liu, W-x. Zhang, D. Zhao, and S.X. Dou: Uniform yolk–shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries. Nat. Commun. 6, 8689 (2015).
M. Sina, K.W. Nam, D. Su, N. Pereira, X.Q. Yang, G.G. Amatucci, and F. Cosandey: Structural phase transformation and Fe valence evolution in FeOxF2−x/C nanocomposite electrodes during lithiation and de-lithiation processes. J. Mater. Chem. A 1, 11629 (2013).
L.A. Montoro and J.M. Rosolen: Gelatin/DMSO: A new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid State Ionics 159, 233 (2003).
S.A. Khateeb, A.G. Lind, R. Santos-Ortiz, N.D. Shepherd, and K.S. Jones: Effects of steel cell components on overall capacity of pulsed laser deposited FeF2 thin film lithium ion batteries. J. Electrochem. Soc. 162, A1667 (2015).
S. Al-khateeb: The suitability of selected austenitic stainless steels and hastelloy C276 alloys as substrates for thin film deposition using spray pyrolysis. Int. J. Mater. Res. 104, 301 (2013).
Acknowledgments
This work has been conducted during the sabbatical leave granted to Dr. Shadi Al Khateeb from Al-Balqa Applied University (BAU) during the academic year 2017–2018. The authors would like to thank the Arab Fund Fellowship Program–Kuwait and USTAR UTAG program for their financial support and equipment during this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Al Khateeb, S., Sparks, T.D. Pore-graded and conductor- and binder-free FeS2 films deposited by spray pyrolysis for high-performance lithium-ion batteries. Journal of Materials Research 34, 2456–2471 (2019). https://doi.org/10.1557/jmr.2019.208
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2019.208