Skip to main content

Advertisement

Log in

Virtual machine concept applied to uncertainties estimation in instrumented indentation testing

  • Nanomechanics and Testing
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The basis of the virtual machine concept, which is commonly used in coordinate measuring machines, was implemented to determine more realistic uncertainties on the estimation of the elastic modulus obtained from nanoindentation tests. The methodology is based on a mathematical model applied to simulate the testing process and to evaluate the uncertainties through Monte Carlo simulations whose application depends on the studied system (instrument, material, scale, etc.). The methodology was applied to the study of fused silica (FQ) and steel samples tested in a nanoindentation system. The results revealed that the most relevant sources of uncertainty are related to the calibration procedure, particularly to the elastic modulus of the calibration material, and to the contact depth estimation; however, the relevance of the uncertainties is system dependent. This work represents a first insight for a deeper consideration of the uncertainties in instrumented indentation testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. R. Cagliero, G. Barbato, G. Maizza, and G. Genta: Measurement of elastic modulus by instrumented indentation in the macro-range: Uncertainty evaluation. Int. J. Mech. Sci. 101, 161 (2015).

    Article  Google Scholar 

  2. C. Ullner: Critical points in ISO 14577 part 2 and 3 considering the uncertainty in measurement. In Proceedings HARDMEKO (Washington D.C., 11–12 November, 2004).

  3. J. Menčík: Uncertainties and errors in nanoindentation. In Nanoindentation in Materials Science, J. Nemecek, ed. (InTech, London, U.K., 2012).

    Google Scholar 

  4. J. Menčik and M.V. Swain: Errors associated with depth-sensing microindentation tests. J. Mater. Res. 10, 1491 (1995).

    Article  Google Scholar 

  5. BIPM—guide to the expression of uncertainty in measurement (GUM). Available at: https://www.bipm.org/en/publications/guides/gum.html (accessed April 06, 2018).

  6. K. Herrmann, D.A. Lucca, M.J. Klopfstein, and F. Menelao: CIRP sponsored international comparison on nanoindentation. Metrologia 47, S50 (2010).

    Article  Google Scholar 

  7. C.L. Giusca, R.K. Leach, and A.B. Forbes: A virtual machine-based uncertainty evaluation for a traceable areal surface texture measuring instrument. Measurement 44, 988 (2011).

    Article  Google Scholar 

  8. J. Sładek and A. Gąska: Evaluation of coordinate measurement uncertainty with use of virtual machine model based on Monte Carlo method. Measurement 45, 1564 (2012).

    Article  Google Scholar 

  9. J. Sładek, K. Ostrowska, and A. Gąska: Modeling and identification of errors of coordinate measuring arms with the use of a metrological model. Measurement 46, 667 (2013).

    Article  Google Scholar 

  10. A. Gąska, W. Harmatys, P. Gąska, M. Gruza, K. Gromczak, and K. Ostrowska: Virtual CMM-based model for uncertainty estimation of coordinate measurements performed in industrial conditions. Measurement 98, 361 (2017).

    Article  Google Scholar 

  11. P. Ceria, S. Ducourtieux, Y. Boukellal, A. Allard, N. Fischer, and N. Feltin: Modelling of the X, Y, Z positioning errors and uncertainty evaluation for the LNE’s mAFM using the Monte Carlo method. Meas. Sci. Technol. 28, 034007 (2017).

    Article  CAS  Google Scholar 

  12. M. Xu, T. Dziomba, and L. Koenders: Modelling and simulating scanning force microscopes for estimating measurement uncertainty: A virtual scanning force microscope. Meas. Sci. Technol. 22, 094004 (2011).

    Article  CAS  Google Scholar 

  13. M. Trenk, M. Franke, and H. Schwenke: The Virtual CMM, a software tool for uncertainty evaluation—Practical application in an accredited calibration lab. In Proceedings of ASPE: Uncertainty Analysis in Measurement and Design (University Park, Pennsylvania, 2004).

    Google Scholar 

  14. ISO/TS 15530-1:2013: Geometrical product specifications (GPS)—Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement—Part 1: Overview and metrological characteristics.

  15. L. Joskowicz, Y. Ostrovsky-Berman, and Y. Myers: Efficient representation and computation of geometric uncertainty: The linear parametric model. Precis. Eng. 34, 2 (2010).

    Article  Google Scholar 

  16. A. Piratelli-Filho and B. di Giacomo: CMM uncertainty analysis with factorial design. Precis. Eng. 27, 283 (2003).

    Article  Google Scholar 

  17. K.D. Summerhays, J.M. Baldwin, D.A. Campbell, and R.P. Henke: Application of simulation software to coordinate measurement uncertainty evaluation. In Proceedings of ASPE: Uncertainty Analysis in Measurement and Design (University Park, Pennsylvania, 2004).

    Google Scholar 

  18. J. Sładek and A. Gaska: Modelling of the coordinate measuring systems accuracy. J. Mach. Eng. 16, 34–46 (2016).

    Google Scholar 

  19. JCGM 101:2008: Supplement 1 to the ‘guide to the expression of uncertainty in measurement’-propagation of distributions using a Monte Carlo method. Available at: http://www.bipm.org/en/publications/guides/gum.html (accessed February 27, 2017).

  20. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  21. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  22. J.R. Pratt, J.A. Kramar, D.B. Newell, and D.T. Smith: Review of SI traceable force metrology for instrumented indentation and atomic force microscopy. Meas. Sci. Technol. 16, 2129 (2005).

    Article  CAS  Google Scholar 

  23. M.S. Kim and J.R. Pratt: SI traceability: Current status and future trends for forces below 10 microNewtons. Measurement 43, 169 (2010).

    Article  Google Scholar 

  24. Y. Fujii: Method of generating and measuring static small force using down-slope component of gravity. Rev. Sci. Instrum. 78, 066104 (2007).

    Article  CAS  Google Scholar 

  25. J.R. Pratt, D.T. Smith, J.A. Kramar, and D.B. Newell: Microforce and instrumented indentation research at the national institute of standards and technology, Gaithersburg, MD. In Society for Experimental Mechanics Annual Meeting on Experimental Mechanics (Charlotte, NC, 2003).

  26. D.T. Smith, G.A. Shaw, R.M. Seugling, D. Xiang, and J.R. Pratt: Traceable Micro-Force Sensor for Instrumented Indentation Calibration, Vol. 1021E (MRS Spring Meeting, San Francisco, California, 2007); pp. 1021–HH1005–1003.

    Google Scholar 

  27. J. Lawall and E. Kessler: Michelson interferometry with 10 pm accuracy. Rev. Sci. Instrum. 71, 2669 (2000).

    Article  CAS  Google Scholar 

  28. ISO 14577-2:2015: Metallic materials—Instrumented indentation test for hardness and materials parameters—Part 2: Verification and calibration of testing machines.

  29. J.F. Song, F.F. Rudder, T.V. Vorburger, and J.H. Smith: Microform calibration uncertainties of Rockwell diamond indenters. J. Res. Natl. Inst. Stand. Technol. 100, 543 (1995).

    Article  CAS  Google Scholar 

  30. A. Germak and C. Origlia: New possibilities in the geometrical calibration of diamond indenters. In XIX IMEKO World Congress (Fundamental and Applied Metrology, Lisbon, Portugal, 2009); p. 1016.

    Google Scholar 

  31. M.R. VanLandingham, T.F. Juliano, and M.J. Hagon: Measuring tip shape for instrumented indentation using atomic force microscopy. Meas. Sci. Technol. 16, 2173 (2005).

    Article  CAS  Google Scholar 

  32. C.G.N. Pelletier, E.C.A. Dekkers, L.E. Govaert, J.M.J. den Toonder, and H.E.H. Meijer: The influence of indenter-surface misalignment on the results of instrumented indentation tests. Polym. Test. 26, 949 (2007).

    Article  CAS  Google Scholar 

  33. A.C. Fischer-Cripps: Nanoindentation, 3rd ed. (Springer, New York, New York, 2011); pp. 21–37.

    Book  Google Scholar 

  34. G.A. Crawford, N. Chawla, M. Koopman, K. Carlisle, and K.K. Chawla: Effect of mounting material compliance on nanoindentation response of metallic materials. Adv. Eng. Mater. 11, 45 (2009).

    Article  CAS  Google Scholar 

  35. J. Marteau, P-E. Mazeran, S. Bouvier, and M. Bigerelle: Zero-point correction method for nanoindentation tests to accurately quantify hardness and indentation size effect. Strain 48, 491–497 (2012).

    Article  CAS  Google Scholar 

  36. R. Hogan: Type A and Type B Uncertainty: Evaluating Uncertainty Components (Isobudgets, 2017). Available at: http://www.isobudgets.com/type-a-and-type-b-uncertainty/ (accessed August 03, 2018).

  37. Manual of the Nano Indenter® XP, MTS Systems Corporation.

  38. Y. Huan, D. Liu, R. Yang, and T. Zhang: Analysis of the practical force accuracy of electromagnet-based nanoindenters. Measurement 43, 1090 (2010).

    Article  Google Scholar 

  39. Capacitive Displacement Sensors-Nanometrology Solutions: Application note from Physik Instrumente (PI), 2007. Available at: http://www.capacitance-sensors.com/pdf/Cap_Sens_Web_PI_Capacitive_Displacement_Nanometrology_Capacitance_Gauge_Sensor_E.pdf (accessed October 14, 2018).

  40. Nano Indenters: Application note from micro star technologies, 2009. Available at: https://www.microstartech.com/ (accessed October 11, 2018).

  41. C.A. Klein: Anisotropy of Young’s modulus and Poisson’s ratio in diamond. Mater. Res. Bull. 27, 1407 (1992).

    Article  CAS  Google Scholar 

  42. C. Gao and M. Liu: Instrumented indentation of fused silica by Berkovich indenter. J. Non-Cryst. Solids 475, 151 (2017).

    Article  CAS  Google Scholar 

  43. G.M. Pharr and A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002).

    Article  CAS  Google Scholar 

  44. J.L. Loubet, M. Bauer, A. Tonck, S. Bec, and B. Gauthier-Manuel: Nanoindentation with a surface force apparatus. In Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, M. Nastasi, D.M. Parkin, and H. Gleiter, eds.; NATO ASI Series, Series E: Applied Sciences (Springer, Dordrecht 1993); pp. 429–447.

    Chapter  Google Scholar 

  45. S. Bec, A. Tonck, J-M. Georges, E. Georges, and J.L. Loubet: Improvements in the indentation method with a surface force apparatus. Philos. Mag. A 74, 1061 (1996).

    Article  CAS  Google Scholar 

  46. R.B. King: Elastic analysis of some punch problems for a layered medium. Int. J. Solids Struct. 23, 1657 (1987).

    Article  Google Scholar 

  47. ISO 14577-1:2015: Metallic materials—Instrumented indentation test for hardness and materials parameters—Part 1: Test method.

  48. G.N. Greaves, A.L. Greer, R.S. Lakes, and T. Rouxel: Poisson’s ratio and modern materials. Nat. Mater. 10, 823 (2011).

    Article  CAS  Google Scholar 

  49. F. Romdhani, F. Hennebelle, M. Ge, P. Juillion, R. Coquet, and J.F. Fontaine: Methodology for the assessment of measuring uncertainties of articulated arm coordinate measuring machines. Meas. Sci. Technol. 25, 125008 (2014).

    Article  CAS  Google Scholar 

  50. S. Kossman, D. Chicot, and A. Iost: Multi-scale instrumented indentation applied to the study of bulk metallic materials. Matér. Tech. 105, 104 (2017).

    Article  Google Scholar 

  51. M. Cabibbo, P. Ricci, R. Cecchini, Z. Rymuza, J. Sullivan, S. Dub, and S. Cohen: An international round-robin calibration protocol for nanoindentation measurements. Micron 43, 215 (2012).

    Article  CAS  Google Scholar 

  52. T. Chudoba and M. Griepentrog: Comparison between conventional Vickers hardness and indentation hardness obtained with different instruments. Z. Metallkd. 96, 1242 (2005).

    Article  CAS  Google Scholar 

  53. P.M. Harris and M.G. Cox: On a Monte Carlo method for measurement uncertainty evaluation and its implementation. Metrologia 51, S176 (2014).

    Article  Google Scholar 

  54. M.J. Bamber, K.E. Cooke, A.B. Mann, and B. Derby: Accurate determination of Young’s modulus and Poisson’s ratio of thin films by a combination of acoustic microscopy and nanoindentation. Thin Solid Films 398, 299 (2001).

    Article  Google Scholar 

  55. K.R. Gadelrab, F.A. Bonilla, and M. Chiesa: Densification modeling of fused silica under nanoindentation. J. Non-Cryst. Solids 358, 392 (2012).

    Article  CAS  Google Scholar 

  56. V. Keryvin, J-X. Meng, S. Gicquel, J-P. Guin, L. Charleux, J-C. Sanglebœuf, P. Pilvin, T. Rouxel, and G. Le Quilliec: Constitutive modeling of the densification process in silica glass under hydrostatic compression. Acta Mater. 62, 250 (2014).

    Article  CAS  Google Scholar 

  57. K. Herrmann, N. Jennett, W. Wegener, J. Meneve, K. Hasche, and R. Seemann: Progress in determination of the area function of indenters used for nanoindentation. Thin Solid Films 377, 394 (2000).

    Article  Google Scholar 

  58. S. Kossman, T. Coorevits, A. Iost, and D. Chicot: A new approach of the Oliver and Pharr model to fit the unloading curve from instrumented indentation testing. J. Mater. Res. 32, 2230 (2017).

    Article  CAS  Google Scholar 

  59. J. Marteau and M. Bigerelle: Toward an understanding of the effect of surface roughness on instrumented indentation results. J. Mater. Sci. 52, 7239 (2017).

    Article  CAS  Google Scholar 

  60. J.Y. Kim, J.J. Lee, Y.H. Lee, J. Jang, and D. Kwon: Surface roughness effect in instrumented indentation: A simple contact depth model and its verification. J. Mater. Res. 21, 2975 (2006).

    Article  CAS  Google Scholar 

  61. M. Laurent-Brocq, E. Béjanin, and Y. Champion: Influence of roughness and tilt on nanoindentation measurements: A quantitative model: Influence of roughness and tilt. Scanning 37, 350 (2015).

    Article  Google Scholar 

  62. X. Zhou, Z. Jiang, H. Wang, and R. Yu: Investigation on methods for dealing with pile-up errors in evaluating the mechanical properties of thin metal films at sub-micron scale on hard substrates by nanoindentation technique. Mater. Sci. Eng., A 488, 318 (2008).

    Article  CAS  Google Scholar 

  63. J.L. Hay, W.C. Oliver, A. Bolshakov, and G.M. Pharr: Using the ratio of loading slope and elastic stiffness to predict pile-up and constraint factor during indentation. MRS Proc 522 (1998).

  64. A. Bolshakov and G.M. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13, 1049 (1998).

    Article  CAS  Google Scholar 

  65. Y.H. Lee, J.H. Hahn, S.H. Nahm, J.I. Jang, and D. Kwon: Investigations on indentation size effects using a pile-up corrected hardness. J. Phys. D: Appl. Phys. 41, 074027 (2008).

    Article  CAS  Google Scholar 

  66. M. Yetna N’jock, D. Chicot, J.M. Ndjaka, J. Lesage, X. Decoopman, F. Roudet, and A. Mejias: A criterion to identify sinking-in and piling-up in indentation of materials. Int. J. Mech. Sci. 90, 145 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephania Kossman.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coorevits, T., Kossman, S., Chicot, D. et al. Virtual machine concept applied to uncertainties estimation in instrumented indentation testing. Journal of Materials Research 34, 2501–2516 (2019). https://doi.org/10.1557/jmr.2019.203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.203

Navigation