Skip to main content
Log in

Hydrogen embrittlement of C40 transition-metal disilicides

  • Novel Synthesis and Processing of Metals
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The improvement of hydrogen embrittlement (HE) is a key problem for transition-metal silicides. Although C40 TMSi2 disilicides are attracted candidates for ultrahigh-temperature applications, the HE mechanism of TMSi2 is unclear. Importantly, the role of hydrogen on the structural configuration, elastic modulus, and hardness of TMSi2 is entirely unknown. To reveal the HE, we study the role of hydrogen in TMSi2 (TM = Nb, Mo, and W) based on the first-principles calculations. Four H-doped sites are considered in detail. The calculated results show that hydrogen is favorable to occupy the octahedral interstitial site because the C40 TMSi2 layered structure is favorable to absorb hydrogen. H-doping results in lattice expansion of c-axis compared with the a-axis and b-axis. H-doping obviously reduces the elastic modulus and hardness of TMSi2 due to the interaction between hydrogen and TMSi2. In addition, H-doping changes the electronic properties of MoSi2 and WSi2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. M. Hu, N. Bi, M. Liu, S. Li, T. Su, G. Gao, and Q. Hu: Microstructure and performance of solidified TiB2TiC composites prepared by high pressure and high temperature. J. Alloys Compd. 786, 906 (2019).

    Article  CAS  Google Scholar 

  2. Y. Pan, S. Wang, X. Zhang, and J. Jia: First-principles investigation of new structure, mechanical and electronic properties of Mo-based silicides. Ceram. Int. 44, 1744 (2018).

    Article  CAS  Google Scholar 

  3. X.H. Wang, H.W. Wang, Z.J. Wei, and C.M. Zou: Al3Ni alloy synthesized at high pressures and its Debye temperature. J. Alloys Compd. 774, 364 (2019).

    Article  CAS  Google Scholar 

  4. Y. Pan, W.M. Guan, and Y.Q. Li: Insight into the electronic and mechanical properties of novel TMCrSi ternary silicides from first-principles calculations. Phys. Chem. Chem. Phys. 20, 15863 (2018).

    Article  CAS  Google Scholar 

  5. S-H. Chang, S.S. Lin, and K.T. Huang: Effect of CrSi/CrSi2 content on the microstructure and properties of vacuum hot-pressed Cr–50 wt% Si alloys. Vacuum 162, 54 (2019).

    Article  CAS  Google Scholar 

  6. Y. Pan and W.M. Guan: Probing the balance between ductility and strength: Transition metal silicides. Phys. Chem. Chem. Phys. 19, 19427 (2017).

    Article  CAS  Google Scholar 

  7. B.D. Beake and A.J. Harris: Nanomechanics to 1000 °C for high temperature mechanical properties of bulk materials and hard coatings. Vacuum 159, 17 (2019).

    Article  CAS  Google Scholar 

  8. Y. Pan and M. Wen: Ab initio calculations of mechanical and thermodynamic properties of TM (transition metal: 3d and 4d)-doped Pt3Al. Vacuum 156, 419 (2018).

    Article  CAS  Google Scholar 

  9. T. Yoshikawa, T. Takayanagi, H. Kimizuka, and M. Shiga: Quantum-thermal crossover of hydrogen and tritium diffusion in α-iron. J. Phys. Chem. C 116, 23113 (2012).

    Article  CAS  Google Scholar 

  10. Y. Pan and C. Jin: Vacancy-induced mechanical and thermodynamic properties of B2-RuAl. Vacuum 143, 165 (2017).

    Article  CAS  Google Scholar 

  11. L. Guo: First-principles study of molecular hydrogen adsorption and dissociation on AlnCr (n = 1–13) clusters. J. Phys. Chem. A 117, 3458 (2013).

    Article  CAS  Google Scholar 

  12. S.S. Kulkov, A.V. Bakulin, and S.E. Kulkova: Effect of boron on the hydrogen-induced grain boundary embrittlement in α-Fe. Int. J. Hydrogen Energy 43, 1909 (2018).

    Article  CAS  Google Scholar 

  13. Y. Pan, S. Wang, and C. Zhang: Ab initio investigation of structure and mechanical properties of PtAlTM ternary alloy. Vacuum 151, 205 (2018).

    Article  CAS  Google Scholar 

  14. G. Stenerud, S. Wenner, J.S. Olsen, and R. Johnsen: Effect of different microstructural features on the hydrogen embrittlement susceptibility of alloy 718. Int. J. Hydrogen Energy 43, 6765 (2018).

    Article  CAS  Google Scholar 

  15. M. Todai, K. Hagihara, K. Kishida, H. Inui, and T. Nakano: Microstructure and fracture toughness in boron added NbSi2(C40)/MoSi2(C11b) duplex crystals. Scr. Mater. 113, 236 (2016).

    Article  CAS  Google Scholar 

  16. Y. Pan: First-principles investigation of the new phases and electrochemical properties of MoSi2 as the electrode materials of lithium ion battery. J. Alloys Compd. 779, 813 (2019).

    Article  CAS  Google Scholar 

  17. M.Z. Mehrizi, M. Shamanian, A. Saidi, R.S. Razazvi, and R. Beigi: Evaluation of oxidation behavior of laser clad CoWSi–WSi2 coating on pure Ni substrate at different temperatures. Ceram. Int. 41, 9715 (2015).

    Article  CAS  Google Scholar 

  18. Y. Pan, P. Mao, H. Jiang, Y. Wan, and W. Guan: Insight into the effect of Mo and Re on mechanical and thermodynamic properties of NbSi2 based silicide. Ceram. Int. 43, 5274 (2017).

    Article  CAS  Google Scholar 

  19. K. Hagihara, Y. Hama, K. Yuge, and T. Nakano: Misfit strain affecting the lamellar microstructure in NbSi2/MoSi2 duplex crystals. Acta Mater. 61, 3432 (2013).

    Article  CAS  Google Scholar 

  20. Y. Pan, Y. Lin, Q. Xue, C. Ren, and H. Wang: Relationship between Si concentration and mechanical properties of Nb–Si compounds: A first-principles study. Mater. Des. 89, 676 (2016).

    Article  CAS  Google Scholar 

  21. X.P. Li, S.P. Sun, H.J. Wang, W.N. Lei, and Y.J.D.Q. Yi: Electronic structure and point defect concentrations of C11b MoSi2 by first-principles calculations. J. Alloys Compd. 605, 45 (2014).

    Article  CAS  Google Scholar 

  22. P. Zhang and X. Guo: Improvement in oxidation resistance of silicide coating on an Nb–Ti–Si based ultrahigh temperature alloy by second aluminizing treatment. Corros. Sci. 91, 101 (2015).

    Article  CAS  Google Scholar 

  23. S. Wang, Y. Pan, Y. Wu, and Y. Lin: Insight into the electronic and thermodynamic properties of NbSi2 from first-principles calculations. RSC Adv. 8, 28693 (2018).

    Article  CAS  Google Scholar 

  24. Y. Pan and S. Wang: Insight into the oxidation mechanism of MoSi2: Ab initio calculations. Ceram. Int. 44, 19583 (2018).

    Article  CAS  Google Scholar 

  25. Y.J. Choi, J.K. Yoon, G.H. Kim, W.Y. Yoon, J.M. Doh, and K.T. Hong: High temperature isothermal oxidation behavior of NbSi2 coating at 1000–1450 °C. Corros. Sci. 129, 102 (2017).

    Article  CAS  Google Scholar 

  26. Y. Pan, J. Zhang, C. Jin, and X. Chen: Influence of vacancy on structural and elastic properties of NbSi2 from first-principles calculations. Mater. Des. 108, 13 (2016).

    Article  CAS  Google Scholar 

  27. S. Shi, L. Zhu, L. Jia, H. Zhang, and Z. Sun: Ab initio study of alloying effects on structure stability and mechanical properties of α-Nb5Si3. Comput. Mater. Sci. 108, 121 (2015).

    Article  CAS  Google Scholar 

  28. J. Xu, J.D. Wu, Z. Li, P. Munroe, and Z.H. Xie: Mechanical properties of Cr-alloyed MoSi2-based nanocomposite coatings with a hierarchical structure. J. Alloys Compd. 565, 127 (2013).

    Article  CAS  Google Scholar 

  29. J.H. Schneibel and J.A. Sekhar: Microstructure and properties of MoSi2–MoB and MoSi2–Mo5Si3 molybdenum silicides. Mater. Sci. Eng., A 340, 204 (2003).

    Article  Google Scholar 

  30. X.G. Liang, Z.D. Ling, X.Y. Zheng, L.X. Feng, L.Y. Fang, and Z.X. Zhou: Theoretical study of elastic properties of tungsten disilicide. Chin. Phys. Lett. 26, 046302 (2009).

    Article  Google Scholar 

  31. H.S. Kang and I.J. Shon: Enhanced mechanical properties of nanostructured WSi2–NbSi2 composite synthesized and sintered by high-frequency induction heating. Mater. Sci. Eng., A 606, 228 (2014).

    Article  CAS  Google Scholar 

  32. M. Koyama, E. Akiyama, Y.K. Lee, D. Raabe, and K. Tsuzaki: Overview of hydrogen embrittlement in high-Mn steels. Int. J. Hydrogen Energy 42, 12706 (2017).

    Article  CAS  Google Scholar 

  33. J. Yamabe, D. Takagoshi, H. Matsunaga, S. Matsuoka, T. Ishikawa, and T. Ichigi: High-strength copper-based alloy with excellent resistance to hydrogen embrittlement. Int. J. Hydrogen Energy 41, 15089 (2016).

    Article  CAS  Google Scholar 

  34. Y. Pan and W.M. Guan: Origin of enhanced corrosion resistance of Ag and Au doped anatase TiO2. Int. J. Hydrogen Energy 44, 10407 (2019).

    Article  CAS  Google Scholar 

  35. S. Sun, H. Fu, J. Liin, G. Guo, Y. Lei, and R. Wang: The stability, mechanical properties, electronic structures and thermodynamic properties of (Ti, Nb)C compounds by first-principles calculations. J. Mater. Res. 33, 495 (2018).

    Article  CAS  Google Scholar 

  36. Y. Pan and M. Wen: Noble metals enhanced catalytic activity of anatase TiO2 for hydrogen evolution reaction. Int. J. Hydrogen Energy 43, 22055 (2018).

    Article  CAS  Google Scholar 

  37. F. Chu, M. Lei, S.A. Maloy, J.J. Petrovic, and T.E. Mitchell: Elastic properties of C40 transition metal disilicides. Acta Mater. 44, 3035 (1996).

    Article  CAS  Google Scholar 

  38. E. Erturk and T. Gurel: Ab initio study of structural, elastic, and vibrational properties of transition-metal disilicides NbSi2 and TaSi2 in hexagonal C40 structure. Phys. B 537, 188 (2018).

    Article  CAS  Google Scholar 

  39. L.F. Mattheiss: Calculated structural properties of CrSi2, MoSi2, and WSi2. Phys. Rev. B 45, 3252 (1992).

    Article  CAS  Google Scholar 

  40. Y. Wang, G. Cheng, M. Qin, Q. Li, Z. Zhan, K. Chen, Y. Li, H. Hu, W. WU, and J. Zhang: Effect of high temperature deformation on the microstructure, mechanical properties and hydrogen embrittlement of 2.25Cr–1Mo–0.25 V steel. Int. J. Hydrogen Energy 42, 24549 (2017).

    Article  CAS  Google Scholar 

  41. S. Liu and Y. Zhan: Insight into structural, mechanical and thermodynamic properties of zirconium boride from first-principles calculations. Comput. Mater. Sci. 103, 111 (2015).

    Article  CAS  Google Scholar 

  42. J. Wu, B. Zhang, and Y. Zhan: Ab initio investigation into the structure and properties of Ir–Zr intermetallics for high-temperature structural applications. Comput. Mater. Sci. 131, 146 (2017).

    Article  CAS  Google Scholar 

  43. Y. Pan: RuAl2: Structure, electronic and elastic properties from first-principles. Mater. Res. Bull. 93, 56 (2017).

    Article  CAS  Google Scholar 

  44. Y. Pan and W.M. Guan: Exploring the structural stability and mechanical properties of TM5SiB2 ternary silicides. Ceram. Int. 44, 9893 (2018).

    Article  CAS  Google Scholar 

  45. Y. Pan, P. Wang, and C.M. Zhang: Structure, mechanical, electronic and thermodynamic properties of Mo5Si3 from first-principles calculations. Ceram. Int. 44, 12357 (2018).

    Article  CAS  Google Scholar 

  46. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B 76, 054115 (2007).

    Article  CAS  Google Scholar 

  47. R. Hill: The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. 65, 349 (1952).

    Article  Google Scholar 

  48. Y. Pan and B. Zhou: ZrB2: Adjusting the phase structure to improve the brittle fracture and electronic properties. Ceram. Int. 43, 8763 (2017).

    Article  CAS  Google Scholar 

  49. X.Q. Chen, H.Y. Niu, D.Z. Li, and Y.Y. Li: Modeling hardness of polycrystalline materials and bulk metallic glasses. Intermetallics 19, 1275 (2011).

    Article  CAS  Google Scholar 

  50. I. Papadimitriou, C. Utton, A. Scott, and P. Tsakiropoulos: Ab initio study of the intermetallics in Nb–Si binary system. Intermetallics 54, 125 (2014).

    Article  CAS  Google Scholar 

  51. M. Aoki, D.N. Manh, D.G. Pettifor, and V. Vitek: Atom-based bond-order potentials for modelling mechanical properties of metals. Prog. Mater. Sci. 52, 154 (2007).

    Article  CAS  Google Scholar 

  52. S. Wang, Y. Pan, and Y. Lin: First-principles study of the effect of Cr and Al on the oxidation resistance of WSi2. Chem. Phys. Lett. 698, 211 (2018).

    Article  CAS  Google Scholar 

  53. K. Tanaka, K. Nawata, H. Inui, M. Yamaguchi, and M. Koiwa: Refinement of crystallographic parameters in transition metal disilicides with the C11b, C40 and C54 structures. Intermetallics 9, 603 (2001).

    Article  CAS  Google Scholar 

  54. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717 (2002).

    CAS  Google Scholar 

  55. Y. Pan, Y.Q. Li, Q.H. Zheng, and Y. Xu: Point defect of titanium sesquioxide Ti2O3 as the application of next generation Li-ion batteries. J. Alloys Compd. 786, 621 (2019).

    Article  CAS  Google Scholar 

  56. J.P. Perdew and Y. Wang: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992).

    Article  CAS  Google Scholar 

  57. Y. Pan: Role of S–S interlayer spacing on the hydrogen storage mechanism of MoS2. Int. J. Hydrogen Energy 43, 3087 (2018).

    Article  CAS  Google Scholar 

  58. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    Article  CAS  Google Scholar 

  59. Y. Pan and W. Guan: Prediction of new stable structure, promising electronic and thermodynamic properties of MoS3: Ab initio calculations. J. Power Sources 325, 246 (2016).

    Article  CAS  Google Scholar 

  60. D. Guo, C. Li, K. Li, B. Shao, D. Chen, Y. Ma, J. Sun, and W. Zeng: The anisotropic thermoelectricity property of AgBi3S5 by first-principles study. J. Alloys Compd. 773, 812 (2019).

    Article  CAS  Google Scholar 

  61. Y. Pan and W.M. Guan: Prediction of new phase and electrochemical properties of Li2S2 for the application of Li–S batteries. Inorg. Chem. 57, 6617 (2018).

    Article  CAS  Google Scholar 

  62. W. Huang, F. Liu, J. Liu, and Y. Tuo: First-principles study on mechanical properties and electronic structures of Ti–Al intermetallic compounds. J. Mater. Res. 34, 1112 (2019).

    Article  CAS  Google Scholar 

  63. Y. Pan and M. Wen: The influence of vacancy on the mechanical properties of IrAl coating: First-principles calculations. Thin Solid Films 664, 46 (2018).

    Article  CAS  Google Scholar 

  64. X. Bi, X. Hu, X. Jiang, and Q. Li: Effect of Cu additions on mechanical properties of Ni3Sn4-based intermetallic compounds: First-principles calculations and nano-indentation measurements. Vacuum 164, 7 (2019).

    Article  CAS  Google Scholar 

  65. Y. Pan, Y. Li, and Q. Zheng: Influence of Ir concentration on the structure, elastic modulus and elastic anisotropy of Nb–Ir based compounds from first-principles calculations. J. Alloys Compd. 789, 860 (2019).

    Article  CAS  Google Scholar 

  66. T.Z. Todorova, M. Gaier, J.W. Zwanziger, and K.P. Plucknett: Understanding the elastic and thermal response in TiC-based ceramic–metal composite systems: First-principles and mechanical studies. J. Alloys Compd. 789, 712 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Sichuan Provincial College’s Sate Key Laboratory of Oil and Gas Reservoir Project (X151518KCL26) and the National Natural Science Foundation of China (No. 51274170). We acknowledge the help from Lady Yun Zheng and Runxi Pan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Pu, D. Hydrogen embrittlement of C40 transition-metal disilicides. Journal of Materials Research 34, 3163–3172 (2019). https://doi.org/10.1557/jmr.2019.199

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.199

Navigation