Skip to main content
Log in

Thermodynamics of ZnxMn3−xO4 and Mg1−zCuzCr2O4 spinel solid solutions

  • Article
  • Thermodynamics of Complex Solids
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermodynamic properties of ZnxMn3−xO4 and Mg1−zCuzCr2O4 spinel solid solutions have been studied using high-temperature oxide melt solution calorimetry. Except for MgCr2O4 spinel, which possesses cubic structure, the other three end-members are tetragonal. The enthalpies of mixing are small endothermic and fit subregular solution behavior. The main contribution to the energetics of mixing of both spinel systems comes from the difference in the crystal structure between the end-members: a change in the tetragonal distortion for ZnxMn3−xO4 solid solutions and a transition from cubic to tetragonal for the Mg1−zCuzCr2O4 system. If all Mg1−zCuzCr2O4 spinels possessed the same structure, the mixing enthalpies would be close to zero. Because both series have normal cation distributions, the entropies of mixing are equal to the configurational entropies of mixing of Zn2+ and Mn2+ and of Mg2+ and Cu2+ on tetrahedral sites, and the activities would follow Raoult’s law. The calculated Gibbs energy of mixing confirms the absence of solvus at any temperature for both systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. F. Severino, J. Brito, O. Carias, and J. Laine: Comparative study of alumina-supported CuO and CuCr2O4 as catalysts for CO oxidation. J. Catal. 102, 172–179 (1986).

    Article  CAS  Google Scholar 

  2. R. Meyer: Explosives, 3rd ed. (Wiley-VCH, Weinheim, 1987); p. 285.

    Google Scholar 

  3. A.R. West: Solid State Chemistry and its Applications (John Wiley & Sons Ltd., Chichester, New York; Brisbane, Toronto, Singapore, 1984); p. 734.

    Google Scholar 

  4. S. Shen, S. Chen, and B. Wu: The thermal decomposition of ammonium perchlorate (AP) containing a burning-rate modifier. Thermochim. Acta 223, 135–143 (1993).

    Article  CAS  Google Scholar 

  5. J. Yan, L. Zhang L, H. Yang, Y. Tang, Z. Lu, S. Guo, Y. Dai, Y. Han, and M. Yao: CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation. J. Sol. Energy 83, 1534–1539 (2009).

    Article  CAS  Google Scholar 

  6. A. Dandekar, R.T.K. Baker, and M.A. Vannice: Carbon supported copper catalyst: II. Crotonaldehyde hydrogenation. J. Catal. 184, 421–439 (1997).

    Article  Google Scholar 

  7. J. Laine and F. Severino: Changes in alumina-supported copper and copper—Chromite catalysts by the introduction of water during carbon monoxide oxidation. Appl. Catal. 65, 253–258 (1990).

    Article  CAS  Google Scholar 

  8. S. Guillemet-Fritsch, C. Chanel, J. Sarrias, S. Bayonne, A. Rousset, X. Alcobe, and M.L. Martinez Sarrion: Structure, thermal stability and electrical properties of zinc manganites. Solid State Ionics 128, 233–242 (2000).

    Article  CAS  Google Scholar 

  9. R.C. Buchanan: Ceramics Materials for Electronics, 3rd ed. (Marcel Dekker, New York, 2004).

    Google Scholar 

  10. P. Yang, H.Q. Yang, Y.L. Lu, N. Li, and B.X. Li: Research of Zn–Mn spinel electrode materials for aqueous secondary batteries. J. Power Sources 62, 223–227 (1996).

    Article  Google Scholar 

  11. T.N. Irvine: Chromian spinel as a petrogenetic indicator, part I. Theory. Can. J. Earth Sci. 2, 648–672 (1965).

    Article  CAS  Google Scholar 

  12. B.W. Evans and B.R. Frost: Chrome spinels in progressive metamorphism—A preliminary analysis. Geochim. Cosmochim. Acta 39, 959–972 (1975).

    Article  CAS  Google Scholar 

  13. H.J.B. Dick and T. Bullen: Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol. 86, 54–76 (1984).

    Article  CAS  Google Scholar 

  14. R.O. Sack and M.S. Ghiorso: Chromian spinels as petrogenetic indicators: Thermodynamics and petrological applications. Am. Mineral. 76, 827–847 (1991).

    CAS  Google Scholar 

  15. J.F. Allan, R.O. Sack, and R. Batiza: Cr-rich spinels as petrogenetic indicators: MORB-type lavas from the lamont seamount chain, eastern pacific. Am. Mineral. 73, 741–753 (1988).

    CAS  Google Scholar 

  16. A. Miller: Distribution of cations in spinels. J. Appl. Phys. 30, S24–25S (1959).

    Article  Google Scholar 

  17. D.P. Shoemaker, E.E. Rodriguez, and R. Seshadri: Intrinsic exchange bias in ZnxMn3−xO4 (x ≤ 1) solid solutions. Phys. Rev. B 80, 144422–144431 (2009).

    Article  Google Scholar 

  18. D.P. Shoemaker and R. Seshadri: Total scattering descriptions of local and cooperative distortions in the oxide spinel Mg1−xCuxCr2O4 with dilute Jahn–Teller ions. Phys. Rev. B 82, 214107–1–214107–9 (2010).

    Article  Google Scholar 

  19. A. Navrotsky and O.J. Kleppa: Thermodynamics of formation of simple spinels. J. Inorg. Nucl. Chem. 30, 479–498 (1968).

    Article  CAS  Google Scholar 

  20. F. Muller and O.J. Kleppa: Thermodynamics of formation of chromite spinels. J. Inorg. Nucl. Chem. 35, 2673–2678 (1973).

    Article  Google Scholar 

  21. N.G. Schmahl and E. Minzl: Ermittlung thermodynamischer Daten von Doppeloxidbildungen aus Gleichgewichtsmessungen. Z. Phys. Chem. 47, 358–382 (1965).

    Article  CAS  Google Scholar 

  22. A.M.M. Gadalla and J. White: Equilibrium relationships in the system CuO–Cu2O–Al2O3. Trans. J. Br. Ceram. Soc. 63, 39–62 (1964).

    CAS  Google Scholar 

  23. J.D. Tretjakow and H. Schmalzried: Zur Thermodynamik von Spinellphasen. (Chromite, Ferrite, Aluminate). Ber. Bunsenges. Phys. Chem. 69, 396–402 (1965).

    Article  Google Scholar 

  24. K.T. Jacob, G.M. Kale, and G.N.K. Iyengar: Oxygen potentials, Gibbs’ energies and phase relations in the Cu–Cr–O system. J. Mater. Sci. 21, 2753–2758 (1986).

    Article  CAS  Google Scholar 

  25. P. Zhang, T. Lee, F. Xu, and A. Navrotsky: Energetics of ZnO nanoneedles: Surface enthalpy, stability, and growth. J. Mater. Res. 23, 1652–1657 (2008).

    Article  CAS  Google Scholar 

  26. N. Birkner and A. Navrotsky: Thermodynamics of manganese oxides: Effects of particle size and hydration on oxidation-reduction equilibria among hausmannite, bixbyite, and pyrolusite. Am. Mineral. 97, 1291–1298 (2012).

    Article  CAS  Google Scholar 

  27. S. Klemme and H.S.C. O’Neill: The reaction MgCr2O4 + SiO2 = Cr2O3 + MgSiO3 and the free energy of formation of magnesiochromite (MgCr2O4). Contrib. Mineral. Petrol. 130, 59–65 (1997).

    Article  CAS  Google Scholar 

  28. S. Fritsch and A. Navrotsky: Thermodynamic properties of manganese oxides. J. Am. Ceram. Soc. 79, 1761–1768 (1996).

    Article  CAS  Google Scholar 

  29. R.A. Robie and B.S. Hemingway: Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 Bar (105 Pascals) Pressure and at Higher Temperatures (U.S. Geological Survey Bulletin, 2131, Washington DC, 1995); p. 461.

  30. M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. Mc-Donald, and A.N. Syverud: JANAF thermochemical tables. Third edition. Part II. Cr–Zr. J. Phys. Chem. Ref. Data 14 (Suppl. 1), 927–1856 (1985).

    CAS  Google Scholar 

  31. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751–767 (1976).

    Article  CAS  Google Scholar 

  32. Z-G. Yé, O. Crottaz, F. Vaudano, F. Kubel, P. Tissot, and H. Schmid: Single crystal growth, structure refinement, ferroelastic domains and phase transitions of the hausmannite CuCr2O4. Ferroelectrics 162, 103–118 (1994).

    Article  Google Scholar 

  33. B.J. Kennedy and Q. Zhou: The role of orbital ordering in the tetragonal-to-cubic phase transition in CuCr2O4. J. Solid State Chem. 181, 2227–2230 (2008).

    Article  CAS  Google Scholar 

  34. H. Ehrenberg, M. Knapp, C. Baehtz, and S. Klemme: Tetragonal low-temperature phase of MgCr2O4. Powder Diffr. 17, 230–233 (2002).

    Article  CAS  Google Scholar 

  35. M.C. Kemei, S.L. Moffitt, D.P. Shoemaker, and R. Seshadri: Evolution of magnetic properties in the normal spinel solid solution Mg1−xCuxCr2O4. J. Phys.: Condens. Matter 24, 042011–046003 (2012).

    Google Scholar 

  36. A. Navrotsky: Progress and new directions in high temperature calorimetry. Phys. Chem. Miner. 2, 89–104 (1977).

    Article  CAS  Google Scholar 

  37. A. Navrotsky: Progress and new directions in high-temperature calorimetry revisited. Phys. Chem. Miner. 24, 222–241 (1997).

    Article  CAS  Google Scholar 

  38. A. Navrotsky: Progress and new directions in calorimetry: A 2014 perspective. J. Am. Ceram. Soc. 97, 3349–3359 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from DOE Grant DE-FG02-97ER1 is gratefully acknowledged. The authors thank Dr. Ram Seshadri (University of California, Santa Barbara) for his valuable contribution and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Navrotsky.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lilova, K., Sharma, G., Hayun, S. et al. Thermodynamics of ZnxMn3−xO4 and Mg1−zCuzCr2O4 spinel solid solutions. Journal of Materials Research 34, 3305–3311 (2019). https://doi.org/10.1557/jmr.2019.196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.196

Navigation