Skip to main content
Log in

Effects of interlayer properties on the performance of tandem organic solar cells with low and high band gap polymers

  • Energy Conversion and Storage Materials
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Tandem organic solar cells with two stacked cells were fabricated using semiconducting polymers and fullerene derivatives. A thin intermediate multilayer of calcium, silver, and molybdenum oxide connects the front and the back cells. Bulk heterojunction (BHJ) films of the low band gap (BG) polymer, poly[N-9″-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT), and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) are used for the front cell. As for the back cell of the tandem structure, the same PCDTBT:PC71BM BHJ (T1) or the high BG polymer poly(3-hexylthiophene) (P3HT) blended with [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) BHJ (T2) are used. The critical role of interlayer properties on the photovoltaic performance of devices are investigated. The observed open-circuit potential for the tandem cell approaches the sum of the potentials of the two respective subcells, demonstrating the potential for increasing the voltage of the solar cell using the tandem structure even with same or lower band gap polymer in the front.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J. Jensen, M. Mikkelsen, and F.C. Krebs: Flexible substrates as basis for photocatalytic reduction of carbon dioxide. Sol. Energy Mater. Sol. Cells 95, 2949 (2011).

    Article  CAS  Google Scholar 

  2. F.C. Krebs, S.A. Gevorgyan, and J. Alstrup: A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442 (2009).

    Article  CAS  Google Scholar 

  3. F.C. Krebs: All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org. Electron. 10, 761 (2009).

    Article  CAS  Google Scholar 

  4. F.C. Krebs: Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394 (2009).

    Article  CAS  Google Scholar 

  5. G. Dennler, M.C. Scharber, and C.J. Brabec: Polymer–fullerene bulk-heterojunction solar cells. Adv. Mater. 21, 1323 (2009).

    Article  CAS  Google Scholar 

  6. G. Li, R. Zhu, and Y. Yang: Polymer solar cells. Nat. Photonics 6, 153 (2012).

    Article  CAS  Google Scholar 

  7. L. Meng, Y. Zhang, X. Wan, C. Li, X. Zhang, Y. Wang, X. Ke, Z. Xiao, L. Ding, R. Xia, H-L. Yip, Y. Cao, and Y. Chen: Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094 (2018).

    Article  CAS  Google Scholar 

  8. M. Li, K. Gao, X. Wan, Q. Zhang, B. Kan, R. Xia, F. Liu, X. Yang, H. Feng, W. Ni, Y. Wang, J. Peng, H. Zhang, Z. Liang, H-L. Yip, X. Peng, Y. Cao, and Y. Chen: Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics 11, 85 (2016).

    Article  Google Scholar 

  9. S.E. Shaheen, C.J. Brabec, N.S. Sariciftci, F. Padinger, T. Fromherz, and J.C. Hummelen: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841 (2001).

    Article  CAS  Google Scholar 

  10. W.L. Ma, C.Y. Yang, X. Gong, K. Lee, and A.J. Heeger: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617 (2005).

    Article  CAS  Google Scholar 

  11. V. Shrotriya, E.H-E. Wu, G. Li, Y. Yao, and Y. Yang: Efficient light harvesting in multiple-device stacked structure for polymer solar cells. Appl. Phys. Lett. 88, 064104 (2006).

    Article  Google Scholar 

  12. Y. Zou, Z.B. Deng, W.J. Potscavage, M. Hirade, Y.Q. Zheng, and C. Adachi: Very high open-circuit voltage of 5.89 V in organic solar cells with 10-fold-tandem structure. Appl. Phys. Lett. 100, 4 (2012).

    Google Scholar 

  13. G. Dennler, M.C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C.J. Brabec: Design rules for donors in bulk-heterojunction tandem solar cells-towards 15% energy-conversion efficiency. Adv. Mater. 20, 579 (2008).

    Article  CAS  Google Scholar 

  14. L.T. Dou, J.B. You, J. Yang, C.C. Chen, Y.J. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang: Tandem polymer solar cells featuring a spectrally matched low-band gap polymer. Nat. Photonics 6, 180 (2012).

    Article  CAS  Google Scholar 

  15. V.S. Gevaerts, A. Furlan, M.M. Wienk, M. Turbiez, and R.A.J. Janssen: Solution processed polymer tandem solar cell using efficient small and wide band gap polymer:fullerene blends. Adv. Mater. 24, 2130 (2012).

    Article  CAS  Google Scholar 

  16. B. Minnaert and P. Veelaert: Guidelines for the band gap combinations and absorption windows for organic tandem and triple-junction solar cells. Materials 5, 1933 (2012).

    Article  Google Scholar 

  17. C.H. Chou, W.L. Kwan, Z.R. Hong, L.M. Chen, and Y. Yang: A metal-oxide interconnection layer for polymer tandem solar cells with an inverted architecture. Adv. Mater. 23, 1282 (2011).

    Article  CAS  Google Scholar 

  18. L.T. Dou, J. Gao, E. Richard, J.B. You, C.C. Chen, K.C. Cha, Y.J. He, G. Li, and Y. Yang: Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-band gap polymers designed for single junction and tandem polymer solar cells. J. Am. Chem. Soc. 134, 10071 (2012).

    Article  CAS  Google Scholar 

  19. J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, and A.J. Heeger: Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317, 222 (2007).

    Article  CAS  Google Scholar 

  20. G. Namkoong, P. Boland, K. Lee, and J. Dean: Design of organic tandem solar cells using PCPDTBT:PC61BM and P3HT:PC71BM. J. Appl. Phys. 107, 124515 (2010).

    Article  Google Scholar 

  21. A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann: Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells. Org. Electron. 13, 2696 (2012).

    Article  CAS  Google Scholar 

  22. N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, and M. Leclerc: Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. J. Am. Chem. Soc. 130, 732 (2008).

    Article  CAS  Google Scholar 

  23. S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, and A.J. Heeger: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3, 297 (2009).

    Article  CAS  Google Scholar 

  24. T-Y. Chu, S. Alem, P.G. Verly, S. Wakim, J. Lu, Y. Tao, S. Beaupre, M. Leclerc, F. Belanger, D. Desilets, S. Rodman, D. Waller, and R. Gaudiana: Highly efficient polycarbazole-based organic photovoltaic devices. Appl. Phys. Lett. 95, 063304 (2009).

    Article  Google Scholar 

  25. O. Gunawan, T.K. Todorov, and D.B. Mitzi: Loss mechanisms in hydrazine-processed Cu2ZnSn(Se, S)4 solar cells. Appl. Phys. Lett., 233506 97 (2010).

    Article  Google Scholar 

  26. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang: “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv. Funct. Mater. 17, 1636 (2007).

    Article  Google Scholar 

  27. Z.M. Beiley, E.T. Hoke, R. Noriega, J. Dacuna, G.F. Burkhard, J.A. Bartelt, A. Salleo, M.F. Toney, and M.D. McGehee: Morphology-dependent trap formation in high performance polymer bulk heterojunction solar cells. Adv. Energy Mater. 1, 954 (2011).

    Article  CAS  Google Scholar 

  28. G. Namkoong, J. Kong, M. Samson, I-W. Hwang, and K. Lee: Active layer thickness effect on the recombination process of PCDTBT:PC71BM organic solar cells. Org. Electron. 14, 74 (2013).

    Article  CAS  Google Scholar 

  29. C. Uhrich, R. Schueppel, A. Petrich, M. Pfeiffer, K. Leo, E. Brier, P. Kilickiran, and P. Baeuerle: Organic thin-film photovoltaic cells based on oligothiophenes with reduced band gap. Adv. Funct. Mater. 17, 2991 (2007).

    Article  CAS  Google Scholar 

  30. Z. Chiguvare, J. Parisi, and V. Dyakonov: Current limiting mechanisms in indium-tin-oxide/poly3-hexylthiophene/aluminum thin film devices. J. Appl. Phys. 94, 2440 (2003).

    Article  CAS  Google Scholar 

  31. V.D. Mihailetchi, H.X. Xie, B. de Boer, L.J.A. Koster, and P.W.M. Blom: Charge transport and photocurrent generation in poly(3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 16, 699 (2006).

    Article  CAS  Google Scholar 

  32. W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang, and J. Hou: Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139, 7148 (2017).

    Article  CAS  Google Scholar 

  33. M.S. Islam: Analytical modeling of organic solar cells including monomolecular recombination and carrier generation calculated by optical transfer matrix method. Org. Electron. 41, 143 (2017).

    Article  CAS  Google Scholar 

  34. Y. Li, S. Arumugam, C. Krishnan, M.D.B. Charlton, and S.P. Beeby: Encapsulated textile organic solar cells fabricated by spray coating. Chemistry Select 4, 407 (2019).

    CAS  Google Scholar 

  35. N.A. Ran, S. Roland, J.A. Love, V. Savikhin, C.J. Takacs, Y-T. Fu, H. Li, V. Coropceanu, X. Liu, J-L. Brédas, G.C. Bazan, M.F. Toney, D. Neher, and T-Q. Nguyen: Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. Nat. Commun. 8, 79 (2017).

    Article  Google Scholar 

  36. B. Gholamkhass and P. Servati: Solvent-vapor induced morphology reconstruction for efficient PCDTBT based polymer solar cells. Org. Electron. 14, 2278 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council and Canada Foundation for Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenan Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Gholamkhass, B. & Servati, P. Effects of interlayer properties on the performance of tandem organic solar cells with low and high band gap polymers. Journal of Materials Research 34, 2407–2415 (2019). https://doi.org/10.1557/jmr.2019.168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.168

Navigation