Skip to main content
Log in

Double resonance Raman scattering process in 2D materials

  • 2D and Nanomaterials
  • Invited Feature Paper Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Raman spectroscopy is a fundamental tool for the characterization of two-dimensional materials. It provides insights into the electronic and vibrational properties of these materials and is particularly rich in features when the incident laser energy approaches the electronic energy transition of the material. Among these features, the double resonance Raman process provides important information on the electron, phonon, and electron–phonon properties. It was on the study of carbon-related materials that the double resonance bands sparkled showing their potential and, since then, have been deeply searched in the study of novel 2D materials. Here, the authors review the double resonance Raman process in 2D materials focusing on graphene and semiconducting MoS2 highlighting the origin of the bands mediated by the two-phonon and phonon–defect processes. The authors discuss the observed properties of the double resonance bands and compare the processes for graphene and MoS2 to find guiding principles for the appearance of double resonance bands. The authors also discuss the new findings of the intervalley scattering process in transition metal dichalcogenides. A brief discussion of the defect-induced bands in both materials is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 1 (2006).

    Google Scholar 

  2. L.M.M. Malard, M.A.A. Pimenta, G. Dresselhaus, and M.S.S. Dresselhaus: Raman spectroscopy in graphene. Phys. Rep. 473, 51 (2009).

    Article  CAS  Google Scholar 

  3. A.C. Ferrari and D.M. Basko: Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235 (2013).

    Article  CAS  Google Scholar 

  4. H.B. Ribeiro, M.A. Pimenta, and C.J.S. de Matos: Raman spectroscopy in black phosphorus. J. Raman Spectrosc. 49, 76 (2018).

    Article  CAS  Google Scholar 

  5. S. Reich, A.C. Ferrari, R. Arenal, A. Loiseau, I. Bello, and J. Robertson: Resonant Raman scattering in cubic and hexagonal boron nitride. Phys. Rev. B 71, 205201 (2005).

    Article  CAS  Google Scholar 

  6. Q. Cai, D. Scullion, A. Falin, K. Watanabe, T. Taniguchi, Y. Chen, E.J.G. Santos, and L.H. Li: Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale 9, 3059 (2017).

    Article  CAS  Google Scholar 

  7. C. Attaccalite, L. Wirtz, A. Marini, and A. Rubio: Efficient Gate-tunable light-emitting device made of defective boron nitride nanotubes: from ultraviolet to the visible. Sci. Rep. 3, 2698 (2013).

    Article  Google Scholar 

  8. M.A. Pimenta, E. del Corro, B.R. Carvalho, C. Fantini, and L.M. Malard: Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides. Acc. Chem. Res. 48, 41 (2015).

    Article  CAS  Google Scholar 

  9. R. Saito, Y. Tatsumi, S. Huang, X. Ling, and M.S. Dresselhaus: Raman spectroscopy of transition metal dichalcogenides. J. Phys.: Condens. Matter 28, 353002 (2016).

    CAS  Google Scholar 

  10. C.H. Lui, Z. Ye, C. Ji, K-C. Chiu, C-T. Chou, T.I. Andersen, C. Means-Shively, H. Anderson, J-M. Wu, T. Kidd, Y-H. Lee, and R. He: Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 91, 165403 (2015).

    Article  CAS  Google Scholar 

  11. L. Sun, J. Yan, D. Zhan, L. Liu, H. Hu, H. Li, B.K. Tay, J-L.L. Kuo, C-C.C. Huang, D.W. Hewak, P.S. Lee, and Z.X. Shen: Spin–orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering. Phys. Rev. Lett. 111, 126801 (2013).

    Article  CAS  Google Scholar 

  12. B.R. Carvalho, L.M. Malard, J.M. Alves, C. Fantini, and M.A. Pimenta: Symmetry–dependent exciton-phonon coupling in 2D and bulk MoS2 observed by resonance Raman scattering. Phys. Rev. Lett. 114, 136403 (2015).

    Article  CAS  Google Scholar 

  13. E. del Corro, A. Botello-Méndez, Y. Gillet, A.L. Elias, H. Terrones, S. Feng, C. Fantini, D. Rhodes, N. Pradhan, L. Balicas, X. Gonze, J-C. Charlier, M. Terrones, and M.A. Pimenta: Atypical exciton–phonon interactions in WS2 and WSe2 monolayers revealed by resonance Raman spectroscopy. Nano Lett. 16, 2363 (2016).

    Article  CAS  Google Scholar 

  14. P. Soubelet, A.E. Bruchhausen, A. Fainstein, K. Nogajewski, and C. Faugeras: Resonance effects in the Raman scattering of monolayer and few-layer MoSe2. Phys. Rev. B 93, 155407 (2016).

    Article  CAS  Google Scholar 

  15. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695 (2010).

    Article  CAS  Google Scholar 

  16. H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, and D. Baillargeat: From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385 (2012).

    Article  CAS  Google Scholar 

  17. X. Zhang, X-F. Qiao, W. Shi, J-B. Wu, D-S. Jiang, and P-H. Tan: Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757 (2015).

    Article  CAS  Google Scholar 

  18. A. Molina-Sánchez, K. Hummer, and L. Wirtz: Vibrational and optical properties of MoS2: From monolayer to bulk. Surf. Sci. Rep. 70, 554 (2015).

    Article  CAS  Google Scholar 

  19. A.A. Puretzky, L. Liang, X. Li, K. Xiao, K. Wang, M. Mahjouri-Samani, L. Basile, J.C. Idrobo, B.G. Sumpter, V. Meunier, and D.B. Geohegan: Low-frequency Raman fingerprints of two–dimensional metal dichalcogenide layer stacking configurations. ACS Nano 9, 6333 (2015).

    Article  CAS  Google Scholar 

  20. K. Kim, J.U. Lee, D. Nam, and H. Cheong: Davydov splitting and excitonic resonance effects in Raman spectra of few-layer MoSe2. ACS Nano 10, 8113 (2016).

    Article  CAS  Google Scholar 

  21. L. Du, M. Liao, J. Tang, Q. Zhang, H. Yu, R. Yang, K. Watanabe, T. Taniguchi, D. Shi, Q. Zhang, and G. Zhang: Strongly enhanced exciton-phonon coupling in two-dimensional WSe2. Phys. Rev. B 97, 235145 (2018).

    Article  CAS  Google Scholar 

  22. I. Bilgin, A.S. Raeliarijaona, M.C. Lucking, S.C. Hodge, A.D. Mohite, A. de Luna Bugallo, H. Terrones, and S. Kar: Resonant Raman and exciton coupling in high-quality single crystals of atomically thin molybdenum diselenide grown by vapor–phase chalcogenization. ACS Nano 12, 740 (2018).

    Article  CAS  Google Scholar 

  23. M-H. Chiu, M-Y. Li, W. Zhang, W-T. Hsu, W-H. Chang, M. Terrones, H. Terrones, and L-J. Li: Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 9649 (2014).

    Article  CAS  Google Scholar 

  24. G.W. Shim, K. Yoo, S-B. Seo, J. Shin, D.Y. Jung, I-S. Kang, C.W. Ahn, B.J. Cho, and S-Y. Choi: Large–area single–layer MoSe2 and its van der Waals heterostructures. ACS Nano 8, 6655 (2014).

    Article  CAS  Google Scholar 

  25. Y. Gong, S. Lei, G. Ye, B. Li, Y. He, K. Keyshar, X. Zhang, Q. Wang, J. Lou, Z. Liu, R. Vajtai, W. Zhou, and P.M. Ajayan: Two–step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 15, 6135 (2015).

    Article  CAS  Google Scholar 

  26. K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H.J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, and N. Dai: Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 10, 3852 (2016).

    Article  CAS  Google Scholar 

  27. G.S.N. Eliel, M.V.O. Moutinho, A.C. Gadelha, A. Righi, L.C. Campos, H.B. Ribeiro, P-W. Chiu, K. Watanabe, T. Taniguchi, P. Puech, M. Paillet, T. Michel, P. Venezuela, and M.A. Pimenta: Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures. Nat. Commun. 9, 1221 (2018).

    Article  CAS  Google Scholar 

  28. M-L. Lin, Q-H. Tan, J-B. Wu, X-S. Chen, J-H. Wang, Y-H. Pan, X. Zhang, X. Cong, J. Zhang, W. Ji, P-A. Hu, K-H. Liu, and P-H. Tan: Moiré phonons in twisted bilayer MoS2. ACS Nano 12, 8770 (2018).

    Article  CAS  Google Scholar 

  29. R.C. Miller, D.A. Kleinman, and A.C. Gossard: Observation of doubly resonant LO-phonon Raman scattering with GaAs-AlxGa1–x As quantum wells. Solid State Commun. 60, 213 (1986).

    Article  CAS  Google Scholar 

  30. F. Cerdeira, E. Anastassakis, W. Kauschke, and M. Cardona: Stress-induced doubly resonant Raman scattering in GaAs. Phys. Rev. Lett. 57, 3209 (1986).

    Article  CAS  Google Scholar 

  31. A. Alexandrou, M. Cardona, and K. Ploog: Doubly and triply resonant raman scattering by LO phonons in GaAs/AlAs superlattices. Phys. Rev. B 38, 2196 (1988).

    Article  CAS  Google Scholar 

  32. S.I. Gubarev, T. Ruf, and M. Cardona: Doubly resonant Raman scattering in the semimagnetic semiconductor Cd0.95Mn0.05Te. Phys. Rev. B 43, 1551 (1991).

    Article  CAS  Google Scholar 

  33. I. Kupčić: Triple-resonant two-phonon Raman scattering in graphene. J. Raman Spectrosc. 43, 1 (2012).

    Article  CAS  Google Scholar 

  34. D. Yoon, Y.W. Son, and H. Cheong: Strain-dependent splitting of the double-resonance raman scattering band in graphene. Phys. Rev. Lett. 106, 1 (2011).

    Google Scholar 

  35. P. Venezuela, M. Lazzeri, and F. Mauri: Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect–induced and two-phonon bands. Phys. Rev. B 84, 1 (2011).

    Article  CAS  Google Scholar 

  36. C. Thomsen and S. Reich: Double resonant raman scattering in graphite. Phys. Rev. Lett. 85, 5214 (2000).

    Article  CAS  Google Scholar 

  37. A. Grüneis, R. Saito, T. Kimura, L.G. Cançado, M.A. Pimenta, A.G. Jorio, A.G. Souza Filho, G. Dresselhaus, and M.S. Dresselhaus: Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Phys. Rev. B 65, 1 (2002).

    Article  CAS  Google Scholar 

  38. S. Reich and C. Thomsen: Raman spectroscopy of graphite. Philos. Trans. R. Soc., A 362, 2271 (2004).

    Article  CAS  Google Scholar 

  39. J. Maultzsch, S. Reich, and C. Thomsen: Double-resonant Raman scattering in graphite: Interference effects, selection rules, and phonon dispersion. Phys. Rev. B 70, 155403 (2004).

    Article  CAS  Google Scholar 

  40. L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, and A. Jorio: Influence of the atomic structure on the Raman spectra of graphite edges. Phys. Rev. Lett. 93, 5 (2004).

    Google Scholar 

  41. A.C. Ferrari: Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).

    Article  CAS  Google Scholar 

  42. D.L. Mafra, G. Samsonidze, L.M. Malard, D.C. Elias, J.C. Brant, F. Plentz, E.S. Alves, and M.A. Pimenta: Determination of LA and TO phonon dispersion relations of graphene near the Dirac point by double resonance Raman scattering. Phys. Rev. B 76, 233407 (2007).

    Article  CAS  Google Scholar 

  43. L.G. Cançado, A. Jorio, E.H.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, and A.C. Ferrari: Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 11, 3190 (2011).

    Article  CAS  Google Scholar 

  44. K. Gołasa, M. Grzeszczyk, K.P. Korona, R. Bożek, J. Binder, J. Szczytko, A. Wysmołek, and A. Babiński: Optical properties of molybdenum disulfide (MoS2). Acta Phys. Pol., A 124, 849 (2013).

    Article  CAS  Google Scholar 

  45. A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C-I. Chia, B. Wang, V.H. Crespi, F. López-Urías, J-C. Charlier, H. Terrones, and M. Terrones: Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013).

    Article  CAS  Google Scholar 

  46. A.A. Mitioglu, P. Plochocka, G. Deligeorgis, S. Anghel, L. Kulyuk, and D.K. Maude: Second order resonant Raman scattering in single layer tungsten disulfide (WS2). Phys. Rev. B 89, 245442 (2014).

    Article  CAS  Google Scholar 

  47. H-L. Liu, H. Guo, T. Yang, Z. Zhang, Y. Kumamoto, C-C. Shen, Y-T. Hsu, L-J. Li, R. Saito, and S. Kawata: Anomalous lattice vibrations of monolayer MoS2 probed by ultraviolet Raman scattering. Phys. Chem. Chem. Phys. 17, 14561 (2015).

    Article  CAS  Google Scholar 

  48. H. Guo, T. Yang, M. Yamamoto, L. Zhou, R. Ishikawa, K. Ueno, K. Tsukagoshi, Z. Zhang, M.S. Dresselhaus, and R. Saito: Double resonance Raman modes in monolayer and few-layer MoTe2. Phys. Rev. B 91, 205415 (2015).

    Article  CAS  Google Scholar 

  49. W. Shi, M-L. Lin, Q-H. Tan, X-F. Qiao, J. Zhang, and P-H. Tan: Raman and photoluminescence spectra of two–dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Mater. 3, 025016 (2016).

    Article  CAS  Google Scholar 

  50. B.R. Carvalho, Y. Wang, S. Mignuzzi, D. Roy, M. Terrones, C. Fantini, V.H. Crespi, L.M. Malard, and M.A. Pimenta: Intervalley scattering by acoustic phonons in two-dimensional MoS2 revealed by doubley-resonance Raman spectroscopy. Nat. Commun. 8, 14670 (2017).

    Article  Google Scholar 

  51. Q. Qian, Z. Zhang, and K.J. Chen: Layer-dependent second-order Raman intensity of MoS2 and WS2: Influence of intervalley scattering. Phys. Rev. B 97, 165409 (2018).

    Article  CAS  Google Scholar 

  52. J. Kutrowska-Girzycka, J. Jadczak, and L. Bryja: The study of dispersive ‘b’-mode in monolayer MoS2 in temperature dependent resonant Raman scattering experiments. Solid State Commun. 275, 25 (2018).

    Article  CAS  Google Scholar 

  53. T. Sekine, K. Uchinokura, T. Nakashizu, E. Matsuura, and R. Yoshizaki: Dispersive Raman mode of layered compound 2H-MoS2 under the resonant condition. J. Phys. Soc. Jpn. 53, 811 (1984).

    Article  CAS  Google Scholar 

  54. A.M.M. Stacy and D.T.T. Hodul: Raman spectra of IVB and VIB transition metal disulfides using laser energies near the absorption edges. J. Phys. Chem. Solids 46, 405 (1985).

    Article  CAS  Google Scholar 

  55. C. Sourisseau, F. Cruege, M. Fouassier, and M. Alba: Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chem. Phys. 150, 281 (1991).

    Article  CAS  Google Scholar 

  56. N.T. McDevitt, J.S. Zabinski, M.S. Donley, and J.E. Bultman: Disorder-induced low-frequency Raman band observed in deposited MoS2 films. Appl. Spectrosc. 48, 733 (1994).

    Article  CAS  Google Scholar 

  57. G.L. Frey, R. Tenne, M.J. Matthews, M.S. Dresselhaus, and G. Dresselhaus: Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 60, 2883 (1999).

    Article  CAS  Google Scholar 

  58. T. Livneh and E. Sterer: Resonant Raman scattering at exciton states tuned by pressure and temperature in 2H-MoS2. Phys. Rev. B 81, 195209 (2010).

    Article  CAS  Google Scholar 

  59. Z. Lin, B.R. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones, M.A. Pimenta, and M. Terrones: Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 3, 022002 (2016).

    Article  CAS  Google Scholar 

  60. Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, and W. Chen: Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 47, 3100 (2018).

    Article  CAS  Google Scholar 

  61. M. Cardona and R. Merlin: Light Scattering in Solids I., Vol. 8 (Springer, Berlin, Heidelberg, 1983).

    Book  Google Scholar 

  62. S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, and D. Roy: Effect of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91, 195411 (2015).

    Article  CAS  Google Scholar 

  63. H.L. Liu, S. Siregar, E.H. Hasdeo, Y. Kumamoto, C.C. Shen, C.C. Cheng, L.J. Li, R. Saito, and S. Kawata: Deep-ultraviolet Raman scattering studies of monolayer graphene thin films. Carbon 81, 807 (2015).

    Article  CAS  Google Scholar 

  64. L.M. Malard, D.L. Mafra, M.H.D. Guimarães, M.S.C. Mazzoni, and A. Jorio: Group theory analysis of electrons and phonons in N-layer graphene systems. Phys. Rev. B 79, 125426 (2008).

    Article  CAS  Google Scholar 

  65. C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  66. S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón: Tight-binding description of graphene. Phys. Rev. B 66, 1 (2002).

    Article  CAS  Google Scholar 

  67. T.O. Wehling, A.M. Black-Schaffer, and A.V. Balatsky: Dirac materials. Adv. Phys. 63, 1 (2014).

    Article  CAS  Google Scholar 

  68. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

    Article  CAS  Google Scholar 

  69. K.F. Mak, L. Ju, F. Wang, and T.F. Heinz: Optical spectroscopy of graphene: From the far infrared to the ultraviolet. Solid State Commun. 152, 1341 (2012).

    Article  CAS  Google Scholar 

  70. M.M. Lucchese, F. Stavale, E.H.M. Ferreira, C. Vilani, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, and A. Jorio: Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592 (2010).

    Article  CAS  Google Scholar 

  71. E.H. Martins Ferreira, M.V.O. Moutinho, F. Stavale, M.M. Lucchese, R.B. Capaz, C.A. Achete, and A. Jorio: Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder. Phys. Rev. B 82, 125429 (2010).

    Article  CAS  Google Scholar 

  72. A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K.S. Novoselov, and C. Casiraghi: Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett. 12, 3925 (2012).

    Article  CAS  Google Scholar 

  73. S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, and J. Robertson: Kohn anomalies and electron–phonon interactions in graphite. Phys. Rev. Lett. 93, 1 (2004).

    Article  CAS  Google Scholar 

  74. P. May, M. Lazzeri, P. Venezuela, F. Herziger, G. Callsen, J.S. Reparaz, A. Hoffmann, F. Mauri, and J. Maultzsch: Signature of the two-dimensional phonon dispersion in graphene probed by double-resonant Raman scattering. Phys. Rev. B 87, 075402 (2013).

    Article  CAS  Google Scholar 

  75. D.M. Basko, S. Piscanec, and A.C. Ferrari: Electron–electron interactions and doping dependence of the two-phonon Raman intensity in graphene. Phys. Rev. B 80, 165413 (2009).

    Article  CAS  Google Scholar 

  76. S. Bernard, E. Whiteway, V. Yu, D.G. Austing, and M. Hilke: Experimental phonon band structure of graphene using C12 and C13 isotopes. Phys. Rev. B 86, 085409 (2011).

    Article  CAS  Google Scholar 

  77. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).

    Article  CAS  Google Scholar 

  78. K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  CAS  Google Scholar 

  79. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli, and F. Wang: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271 (2010).

    Article  CAS  Google Scholar 

  80. H.R. Gutiérrez, N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, and M. Terrones: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13, 3447 (2013).

    Article  CAS  Google Scholar 

  81. W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P-H. Tan, and G. Eda: Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791 (2013).

    Article  CAS  Google Scholar 

  82. H.M. Hill, A.F. Rigosi, C. Roquelet, A. Chernikov, T.C. Berkelbach, D.R. Reichman, M.S. Hybertsen, L.E. Brus, and T.F. Heinz: Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992 (2015).

    Article  CAS  Google Scholar 

  83. R. Frisenda, Y. Niu, P. Gant, A.J. Molina-Mendoza, R. Schmidt, R. Bratschitsch, J. Liu, L. Fu, D. Dumcenco, A. Kis, D.P. De Lara, and A. Castellanos-Gomez: Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. J. Phys. D: Appl. Phys. 50, 074002 (2017).

    Article  CAS  Google Scholar 

  84. K.F. Mak and J. Shan: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10, 216 (2016).

    Article  CAS  Google Scholar 

  85. K.F. Mak, K.L. McGill, J. Park, and P.L. McEuen: Valleytronics. The Valley Hall effect in MoS2 transistors. Science 344, 1489 (2014).

    Article  CAS  Google Scholar 

  86. C. Mai, A. Barrette, Y. Yu, Y.G. Semenov, K.W. Kim, L. Cao, and K. Gundogdu: Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. Nano Lett. 14, 202 (2014).

    Article  CAS  Google Scholar 

  87. B.W.H. Baugher, H.O.H. Churchill, Y. Yang, and P. Jarillo-Herrero: Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262 (2014).

    Article  CAS  Google Scholar 

  88. K.S. Novoselov, A. Mishchenko, A. Carvalho, and A.H. Castro Neto: 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  89. A.K. Geim and I.V. Grigorieva: Van der Waals heterostructures. Nature 499, 419 (2013).

    Article  CAS  Google Scholar 

  90. N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I.E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari: Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246 (2018).

    Article  CAS  Google Scholar 

  91. J. Gusakova, X. Wang, L.L. Shiau, A. Krivosheeva, V. Shaposhnikov, V. Borisenko, V. Gusakov, and B.K. Tay: Electronic properties of bulk and monolayer TMDs: Theoretical study within DFT framework (GVJ–2e method). Phys. Status Solidi 214, 1700218 (2017).

    Article  CAS  Google Scholar 

  92. J.A.A. Wilson and A.D.D. Yoffe: The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193 (1969).

    Article  CAS  Google Scholar 

  93. D.Y. Qiu, F.H. da Jornada, and S.G. Louie: Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

    Article  CAS  Google Scholar 

  94. N. Zibouche, A. Kuc, J. Musfeldt, and T. Heine: Transition-metal dichalcogenides for spintronic applications. Ann. Phys. 526, 395 (2014).

    Article  CAS  Google Scholar 

  95. A.P.S. Gaur, S. Sahoo, J.F. Scott, and R.S. Katiyar: Electron–phonon interaction and double–resonance Raman studies in monolayer WS2. J. Phys. Chem. C 119, 5146 (2015).

    Article  CAS  Google Scholar 

  96. J.M. Chen and C.S. Wang: Second order Raman spectrum of MoS2. Solid State Commun. 14, 857 (1974).

    Article  CAS  Google Scholar 

  97. T. Livneh and J.E. Spanier: A comprehensive multiphonon spectral analysis in MoS2. 2D Mater. 2, 035003 (2015).

    Article  CAS  Google Scholar 

  98. Y. Gillet, S. Kontur, M. Giantomassi, C. Draxl, and X. Gonze: Ab initio approach to second-order resonant Raman scattering including exciton–phonon interaction. Sci. Rep. 7, 7344 (2017).

    Article  CAS  Google Scholar 

  99. G. Wang, M. Glazov, C. Robert, T. Amand, X. Marie, and B. Urbaszek: Double resonant Raman scattering and valley coherence generation in monolayer WSe2. Phys. Rev. Lett. 115, 1 (2015).

    Google Scholar 

  100. H-L. Liu, T. Yang, Y. Tatsumi, Y. Zhang, B. Dong, H. Guo, Z. Zhang, Y. Kumamoto, M-Y. Li, L-J. Li, R. Saito, and S. Kawata: Deep-ultraviolet Raman scattering spectroscopy of monolayer WS2. Sci. Rep. 8, 11398 (2018).

    Article  CAS  Google Scholar 

  101. K. Gołasa, M. Grzeszczyk, P. Leszczyński, C. Faugeras, A.A.L. Nicolet, A. Wysmołek, M. Potemski, and A. Babiński: Multiphonon resonant Raman scattering in MoS2. Appl. Phys. Lett. 104, 092106 (2014).

    Article  CAS  Google Scholar 

  102. H. Zeng, J. Dai, W. Yao, D. Xiao, and X. Cui: Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490 (2012).

    Article  CAS  Google Scholar 

  103. K.F. Mak, K. He, J. Shan, and T.F. Heinz: Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7, 494 (2012).

    Article  CAS  Google Scholar 

  104. G. Kioseoglou, A.T. Hanbicki, M. Currie, A.L. Friedman, and B.T. Jonker: Optical polarization and intervalley scattering in single layers of MoS2 and MoSe2. Sci. Rep. 6, 25041 (2016).

    Article  CAS  Google Scholar 

  105. P. Dey, J. Paul, Z. Wang, C.E. Stevens, C. Liu, A.H. Romero, J. Shan, D.J. Hilton, and D. Karaiskaj: Optical coherence in atomic-monolayer transition-metal dichalcogenides limited by electron–phonon interactions. Phys. Rev. Lett. 116, 127402 (2016).

    Article  CAS  Google Scholar 

  106. W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, and J.C. Idrobo: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615 (2013).

    Article  CAS  Google Scholar 

  107. Z. Wu, Z. Luo, Y. Shen, W. Zhao, W. Wang, H. Nan, X. Guo, L. Sun, X. Wang, Y. You, and Z. Ni: Defects as a factor limiting carrier mobility in WSe2: A spectroscopic investigation. Nano Res. 9, 3622 (2016).

    Article  CAS  Google Scholar 

  108. W.M. Parkin, A. Balan, L. Liang, P.M. Das, M. Lamparski, C.H. Naylor, J.A. Rodríguez-Manzo, A.T.C. Johnson, V. Meunier, and M. Drndić: Raman shifts in electron-irradiated monolayer MoS2. ACS Nano 10, 4134 (2016).

    Article  CAS  Google Scholar 

  109. Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, and Z. Ni: Defect activated photoluminescence in WSe2 monolayer. J. Phys. Chem. C 121, 12294 (2017).

    Article  CAS  Google Scholar 

  110. W. Shi, X. Zhang, X-L. Li, X-F. Qiao, J-B. Wu, J. Zhang, and P-H. Tan: Phonon confinement effect in two-dimensional nanocrystallites of monolayer MoS2 to probe phonon dispersion trends away from brillouin-zone center. Chin. Phys. Lett. 33, 057801 (2016).

    Article  Google Scholar 

  111. H-P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A.V. Krasheninnikov: Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 109, 035503 (2012).

    Article  CAS  Google Scholar 

  112. J. Lu, A. Carvalho, X.K. Chan, H. Liu, B. Liu, E.S. Tok, K.P. Loh, A.H. Castro Neto, and C.H. Sow: Atomic healing of defects in transition metal dichalcogenides. Nano Lett. 15, 3524 (2015).

    Article  CAS  Google Scholar 

  113. H. Fang, M. Tosun, G. Seol, T.C. Chang, K. Takei, J. Guo, and A. Javey: Degenerate n-doping of few–layer transition metal dichalcogenides by potassium. Nano Lett. 13, 1991 (2013).

    Article  CAS  Google Scholar 

  114. K. Dolui, I. Rungger, C. Das Pemmaraju, and S. Sanvito: Possible doping strategies for MoS2 monolayers: An ab initio study. Phys. Rev. B 88, 1 (2013).

    Article  CAS  Google Scholar 

  115. N. Saigal, I. Wielert, D. Čapeta, N. Vujičić, B. V Senkovskiy, M. Hell, M. Kralj, and A. Grüneis: Effect of lithium doping on the optical properties of monolayer MoS2. Appl. Phys. Lett. 112, 121902 (2018).

    Article  CAS  Google Scholar 

  116. E. Asari, I. Kamioka, K.G. Nakamura, T. Kawabe, W.A. Lewis, and M. Kitajima: Lattice disordering in graphite under rare-gas ion irradiation studied by Raman spectroscopy. Phys. Rev. B 49, 1011 (1994).

    Article  CAS  Google Scholar 

  117. H. Richter, Z.P. Wang, and L. Ley: The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 39, 625 (1981).

    Article  CAS  Google Scholar 

  118. I.H. Campbell and P.M. Fauchet: The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58, 739 (1986).

    Article  CAS  Google Scholar 

  119. K. Ishioka, K.G. Nakamura, and M. Kitajima: Phonon confinement in GaAs by defect formation studied by real-time Raman measurements. Phys. Rev. B 52, 2539 (1995).

    Article  CAS  Google Scholar 

  120. C. Lee, B.G. Jeong, S.J. Yun, Y.H. Lee, S.M. Lee, and M.S. Jeong: Unveiling defect-related Raman mode of monolayer WS2 via tip-enhanced resonance Raman scattering. ACS Nano 12, 9982 (2018).

    Article  CAS  Google Scholar 

  121. A. McCreary, J.R. Simpson, Y. Wang, D. Rhodes, K. Fujisawa, L. Balicas, M. Dubey, V.H. Crespi, M. Terrones, and A.R. Hight Walker: Intricate resonant Raman response in anisotropic ReS2. Nano Lett. 17, 5897 (2017).

    Article  CAS  Google Scholar 

  122. D. Wolverson, S. Crampin, A.S. Kazemi, A. Ilie, and S.J. Bending: Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 8, 11154 (2014).

    Article  CAS  Google Scholar 

  123. X. Wang, N. Mao, W. Luo, H. Kitadai, and X. Ling: Anomalous phonon modes in black phosphorus revealed by resonant Raman scattering. J. Phys. Chem. Lett. 9, 2830 (2018).

    Article  CAS  Google Scholar 

  124. A. Favron, F.A. Goudreault, V. Gosselin, J. Groulx, M. Côté, R. Leonelli, J.F. Germain, A.L. Phaneuf-L’Heureux, S. Francoeur, and R. Martel: Second-order Raman scattering in exfoliated black phosphorus. Nano Lett. 18, 1018 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the final support from the Instituto Nacional de Ciência e Tecnologia (INCT) em Nanomateriais de Carbono (Federative Republic of Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Federative Republic of Brazil), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Federative Republic of Brazil), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, Federative Republic of Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno R. Carvalho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontijo, R.N., Resende, G.C., Fantini, C. et al. Double resonance Raman scattering process in 2D materials. Journal of Materials Research 34, 1976–1992 (2019). https://doi.org/10.1557/jmr.2019.167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.167

Navigation